Highlights
Coronavirus pandemic has created a global alarming situation.
SARS-CoV shares sequence homology with bats, therefore, considered as origin.
Scientists are burning midnight's oil to discover drug or vaccine against this deleterious virus.
Medicinal plants should be explored to find a cure for this disease.
Phyto-constituents are ubiquitously synthesised in plants, effective against SARS-CoV-2.
Clinical trials for herbal formulations are promoted to find drug or vaccine.
Other armours like physical fitness, balanced diet are promoted for boosting immunity.
Plant growth promoting rhizobacteria (PGPRs) are very effective in immobilization of heavy metals and reducing their translocation in plants via precipitation, complex formation and adsorption. The present study was therefore designed to understand the role of
Pseudomonas aeruginosa
and
Burkholderia gladioli
in mitigation of Cd stress (0.4 mM) in 10-days old
L
.
esculentum
seedlings. The present work investigated growth characteristics, photosynthetic pigments, metal tolerance index, metal uptake and the contents of metal chelating compounds (protein bound and non-protein bound thiols, total thiols) in microbes inoculated Cd treated
L
.
esculentum
seedlings. The gene expression profiling of different metal transporters was conducted in order to investigate the quantitative analysis. Our results revealed Cd generated toxicity in seedlings in terms of reduced growth (root length, shoot length and fresh weight) and photosynthetic pigments (chlorophyll, carotenoid and xanthophyll) which enhanced upon inoculations of
P
.
aeruginosa
and
B
.
gladioli
. Further, the metal uptake along with levels of protein and non-protein bound thiols was also enhanced in Cd-treated seedlings. Gene expression studies suggested enhanced expression in the metal transporter genes which were further declined in the microbe supplemented seedlings. Therefore, micro-organisms possess growth promoting traits that enable them to reduce metal toxicity in plants.
Abstract:The term, phenolics has been used to describe a group of structurally diverse plant secondary metabolites. This group includes metabolites derived from the condensation of acetate units (terpenoids), those produced by the modification of aromatic amino acids (phenylpropanoids, cinnamic acid, lignin precursor, catechols and coumarins), flavonoids, isoflavonoids, and tannins. The occurrence and metabolism of phenolic substances in plants, in response to injury or invasion by pathogens, such as fungi, bacteria and viruses have already been studied. Oxidised compounds produced in plants after invasion by pathogens often show considerable biological activity and are a common mechanism of resistance to plant pathogens. The present review gives information regarding the effects of different phenolic compounds on nematode system. It is found that these compounds are involved in plant defense and hence provide resistance against nematode attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.