The combination of adsorption and photoelectrocatalytic degradation system for Remazol Yellow FG decolorization has been studied. The adsorption of Remazol Yellow FG was carried out using alumina and silica, which was activated using H 2 SO 4 1 M and NaOH 1 M. The adsorption results at optimum pH were then used for photoelectrocatalytic process. Photoelectrocatalytic degradation cell was built by electrode Ti/TiO 2 as a cathode and Ti/TiO 2 -PbO as an anode. Material characterizations were performed by UV-Vis Spectrophotometers, X-Ray Diffraction (XRD), and Fourier Transform Infra-Red (FTIR). Activation of the adsorbent can increase Remazol Yellow FG adsorption on alumina base and silica acid that were reached 99.500% and 81.631%, respectively. The optimum condition of Remazol Yellow FG 6 adsorption by alumina acid was at pH 3, alumina base was at pH 4 and pH 5, and silica base was at pH 6 and pH 10. Degradation of Remazol Yellow FG using TiO 2 -PbO electrode was 72.756% at potential cells of 7.5 Volts for 10 minutes. The combination of adsorption and photoelectrocatalytic degradation can decrease the concentration of Remazol Yellow FG achieved 99.705%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.