Image caption generation is a stimulating multimodal task. Substantial advancements have been made in thefield of deep learning notably in computer vision and natural language processing. Yet, human-generated captions are still considered better, which makes it a challenging application for interactive machine learning. In this paper, we aim to compare different transfer learning techniques and develop a novel architecture to improve image captioning accuracy. We compute image feature vectors using different state-of-the-art transferlearning models which are fed into an Encoder-Decoder network based on Stacked LSTMs with soft attention,along with embedded text to generate high accuracy captions. We have compared these models on severalbenchmark datasets based on different evaluation metrics like BLEU and METEOR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.