In the present work, computational fluid dynamics study of stirred tanks of three sizes (20L, 400L and 5000L) provided with helical coils has been carried out. Various design parameters (impeller diameter, type and clearance) and operational parameters (Reynolds Number and Power per unit volume) have been varied and their effect on process side heat transfer coefficient has been studied. CFD model is validated with experimental work of Cummings and West[9] and in house experimentation. Design settings of D/T=0.5, C/T=0.33 for PBTD450 resulted in maximum heat transfer (5440 W/m2K for P/V=1000 W/m3). For constant RPM and constant D/T (Constant Reynolds Number), Increasing the power number of impeller increased process side HTC at the cost of increased power requirement (decreasing efficiency). In such cases, proper selection of impeller system needs to be made based on the requirements of heat removal and optimizing parameters such as product yield, product quality etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.