Ion channels are protein pores that span cell membranes and open and close in response to stimuli like changes in the transmembrane potential, binding of a ligand, or mechanical stress. When open, ions pass through the pore, and hence across the cell membrane, and when closed, ion-transport is precluded. Hence, these channels are nanodevices that have a current-rectification function. There is intense research effort aimed at understanding the molecular-level mechanism for this function. One approach for elucidating the mechanism is to construct a simple abiotic system that mimics this function and to use the mechanistic details of this mimic as a guide to understand the more complex biological channel. We describe here such an abiotic mimic: a synthetic membrane that contains a single conical gold nanotube. The advantage of this mimic is that the surface charge and chemistry of the nanotube wall can be varied, at will, by judicious choice of electrolyte or by thiol chemisorption. This has allowed us to make conical Au nanotubes that rectify the ion current and, just as importantly, to definitively elucidate the mechanism of this function.
Nanoparticles are being developed for a host of biomedical and biotechnological applications, including drug delivery, enzyme immobilization and DNA transfection. Spherical nanoparticles are typically used for such applications, which reflects the fact that spheres are easier to make than other shapes. Micro- and nanotubes--structures that resemble tiny drinking straws--are alternatives that might offer advantages over spherical nanoparticles for some applications. This article discusses four approaches for making micro- and nanotubes, and reviews the current status of efforts to develop biomedical and biotechnological applications of these tubular structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.