Accelerating crop improvement in sorghum, a staple food for people in semiarid regions across the developing world, is key to ensuring global food security in the context of climate change. To facilitate gene discovery and molecular breeding in sorghum, we have characterized ∼265,000 single nucleotide polymorphisms (SNPs) in 971 worldwide accessions that have adapted to diverse agroclimatic conditions. Using this genome-wide SNP map, we have characterized population structure with respect to geographic origin and morphological type and identified patterns of ancient crop diffusion to diverse agroclimatic regions across Africa and Asia. To better understand the genomic patterns of diversification in sorghum, we quantified variation in nucleotide diversity, linkage disequilibrium, and recombination rates across the genome. Analyzing nucleotide diversity in landraces, we find evidence of selective sweeps around starch metabolism genes, whereas in landrace-derived introgression lines, we find introgressions around known height and maturity loci. To identify additional loci underlying variation in major agroclimatic traits, we performed genome-wide association studies (GWAS) on plant height components and inflorescence architecture. GWAS maps several classical loci for plant height, candidate genes for inflorescence architecture. Finally, we trace the independent spread of multiple haplotypes carrying alleles for short stature or long inflorescence branches. This genome-wide map of SNP variation in sorghum provides a basis for crop improvement through marker-assisted breeding and genomic selection.Sorghum bicolor | quantitative trait locus | adaptation
Genome-environment associations and phenotypic analyses may reveal the basis of environmental adaptation.
Cassava (Manihot esculenta Crantz) is an important staple food crop in Africa and South America; however, ubiquitous deleterious mutations may severely decrease its fitness. To evaluate these deleterious mutations, we constructed a cassava haplotype map through deep sequencing 241 diverse accessions and identified >28 million segregating variants. We found that (i) although domestication has modified starch and ketone metabolism pathways to allow for human consumption, the concomitant bottleneck and clonal propagation have resulted in a large proportion of fixed deleterious amino acid changes, increased the number of deleterious alleles by 26%, and shifted the mutational burden toward common variants; (ii) deleterious mutations have been ineffectively purged, owing to limited recombination in the cassava genome; (iii) recent breeding efforts have maintained yield by masking the most damaging recessive mutations in the heterozygous state but have been unable to purge the mutation burden; such purging should be a key target in future cassava breeding.For millions of people in the tropics, cassava is the third most consumed carbohydrate source, after rice and maize 1 . Even though cassava was domesticated in Latin America 2,3 , it has spread widely and has become a major staple crop in Africa. Although its wild progenitor, M. esculenta sp. falbellifolia, reproduces by seed 4 , cultivated cassava is notably almost exclusively clonally propagated via stem cutting 5 . The limited number of recombination events in such vegetatively propagated crops may result in an accumulation of deleterious alleles throughout the genome 6 . Thus, mutation burden in cassava is expected to be more severe than that in sexually propagated species. Deleterious mutations are considered to be at the heart of inbreeding depression 7 . Even in elite cassava accessions, inbreeding depression is extremely severe, and a single generation of inbreeding may result in a >60% decrease in fresh root yield 8,9 . In this study, we sought to identify deleterious mutations in cassava populations, with the goal of accelerating cassava breeding by allowing breeders to purge deleterious mutations more efficiently.We conducted a comprehensive characterization of genetic variation by whole-genome sequencing (WGS) of 241 cassava accessions ( Fig. 1, Supplementary Fig. 1 and Supplementary Table 1). On average, more than 30× coverage was generated for each accession. To ensure high-quality variant discovery, variants from low-copynumber regions of the cassava genome 10,11 were identified to develop the cassava haplotype map II (HapMapII) (Supplementary Fig. 2), containing 25.9 million SNPs and 1.9 million insertions/deletions (indels) (Supplementary Table 2), of which nearly 50% were rare (minor-allele frequency <0.05) (Supplementary Fig. 3). The error rate of variant calling, i.e., the proportion of segregating sites in the reference accession, was 0.01%. The correlation between read depth and the proportion of SNP heterozygosity was extremely low (r 2 = 6 × 10...
A combination of two approaches, namely QTL analysis and gene enrichment analysis were used to identify candidate genes in the “QTL-hotspot” region for drought tolerance present on the Ca4 pseudomolecule in chickpea. In the first approach, a high-density bin map was developed using 53,223 single nucleotide polymorphisms (SNPs) identified in the recombinant inbred line (RIL) population of ICC 4958 (drought tolerant) and ICC 1882 (drought sensitive) cross. QTL analysis using recombination bins as markers along with the phenotyping data for 17 drought tolerance related traits obtained over 1–5 seasons and 1–5 locations split the “QTL-hotspot” region into two subregions namely “QTL-hotspot_a” (15 genes) and “QTL-hotspot_b” (11 genes). In the second approach, gene enrichment analysis using significant marker trait associations based on SNPs from the Ca4 pseudomolecule with the above mentioned phenotyping data, and the candidate genes from the refined “QTL-hotspot” region showed enrichment for 23 genes. Twelve genes were found common in both approaches. Functional validation using quantitative real-time PCR (qRT-PCR) indicated four promising candidate genes having functional implications on the effect of “QTL-hotspot” for drought tolerance in chickpea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.