PurposeTo observe the effectiveness of the practical instruction sheet and the educational video for left-sided breast treatment in a patient receiving deep inspiration breath hold (DIBH) technique. Two parameters, simulation time and patient satisfaction, were assessed through the questionnaire.MethodsTwo different approaches, which were the instruction sheet and educational video, were combinedly used to assist patients during DIBH procedures. The guideline was assigned at least 1 week before the simulation date. On the simulation day, patients would fill the questionnaire regarding their satisfaction with the DIBH instruction. The questionnaire was categorized into five levels: extremely satisfied to dissatisfied, sequentially. The patients were divided into four groups: not DIBH technique, DIBH without instruction materials, the DIBH with instruction sheet or educational video, and DIBH with both of instruction sheet and educational video.ResultsTotal number of 112 cases of left-sided breast cancer were analyzed. The simulation time during DIBH procedure significantly reduced when patients followed the instruction. There was no significant difference in simulation time on the DIBH procedures between patient compliance via instruction sheet or educational video or even following both of them. The excellent level was found at 4.6 ± 0.1 and 4.5 ± 0.1, for patients coaching via instruction sheet as well as on the educational video, respectively.ConclusionPatient coaching before simulation could potentially reduce the lengthy time in the simulation process for DIBH technique. Practicing the DIBH technique before treatment is strongly advised.
The aim of this work was to investigate the dosimetric characteristics of radiophotoluminescent glass dosimeter (RPLGD) for high energy photon beams in both flattening filter mode and flattening filter free (FFF) mode. The dosimetric characteristics of RPLGD model GD-302M were studied in 6 MV photon beams for the reproducibility of dosimeter reader, uniformity and reproducibility of RPLGD, dose linearity (range from 1 to 20 Gy), repetition rate, and angular dependence. In addition, the energy responses were observed in flattening filter mode (6 MV, 10 MV, and 15 MV) from Varian Clinac Cseries and FFF mode (6 MV_FFF and 10 MV_FFF) from Varian TrueBEAM system. The FGD-1000 reader system exhibited stable readout. The entire number of 100 RPLGDs showed good uniformity and reproducibility within ±1.5%. Furthermore, the signal from RPLGD demonstrated a linear proportion to the radiation dose (r = 0.999), and no energy dependence was observed. For repetition rate response of flattening filter mode and FFF mode, the maximum error of relative response to 400 MU/min were 0.977 ±0.006 and 0.986±0.017, respectively. The response of RPLGD reached 1.00 at ±30°g antry angle while at +90°gantry angle, the RPLGD response was 8% lower compared to-90°gantry angle because the attenuation effect was more pronounced. We conclude that the RPLGD is capable to measure radiation dose since it provides desirable dosimetric properties such as good uniformity and reproducibility of RPLGD including the reader system. Besides, RPLGD is available with small active readout area which adds benefit for clinical implementation in radiotherapy, especially for advanced techniques.
Radiation protection in the scrotum to reduce the risk of genetic effect in the future is very important. This study aimed to measure the scrotal dose outside the treatment fields by using the radio-photoluminescence glass dosimeter (RPLGD). The characteristics of RPLGD model GD-302M were studied. Scattered dose to scrotum was measured in one liposarcoma case with the prescribed dose of 60 Gy. RPLGDs were placed in three different locations: one RPLGD was positioned at the posterior area which closer to the scrotum, and the other two RPLGDs were placed between the penis and the scrotum. Three RPLGDs were employed in each location. The scattered doses were measured in every fraction during the whole course of treatment. The entire number of 100 RPLGDs showed the uniformity within ±2%. The signal from RPLGD demonstrated linear proportion to the radiation dose (r = 0.999). The relative energy response correction factor was 1.05. The average scrotal dose was 4.1 ± 0.9 cGy per fraction. The results presented a wide range since there was a high uncertainty during RPLGD placement. The total scrotal dose for the whole course of treatment was 101.9 cGy (1.7% of the prescribed dose). The RPLGD model GD-302M could be used to measure scattered dose after applying the relative energy correction factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.