Isr develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical, heterogeneous and dynamic problems of engineering technology and systems for industry and government.Isr is a permanent institute of the university of maryland, within the a. James clark school of engineering. It is a graduated national science foundation engineering research center.
In this article, we provide convergence results for an Ant-based Routing Algorithm (ARA) for wireline, packet-switched communication networks, that are acyclic. Such algorithms are inspired by the foraging behavior of ants in nature. We consider an ARA algorithm proposed earlier by Bean and Costa [2005]. The algorithm has the virtues of being adaptive and distributed, and can provide a multipath routing solution. We consider a scenario where there are multiple incoming data traffic streams that are to be routed to their respective destinations via the network. Ant packets, which are nothing but probe packets, are introduced to estimate the path delays in the network. The node routing tables, which consist of routing probabilities for the outgoing links, are updated based on these delay estimates. In contrast to the available analytical studies in the literature, the link delays in our model are stochastic, time-varying, and dependent on the link traffic. The evolution of the delay estimates and the routing probabilities are described by a set of stochastic iterative equations. In doing so, we take into account the distributed and asynchronous nature of the algorithm operation. Using methods from the theory of stochastic approximations, we show that the evolution of the delay estimates can be closely tracked by a deterministic ODE (Ordinary Differential Equation) system, when the step size of the delay estimation scheme is small. We study the equilibrium behavior of the ODE system in order to obtain the equilibrium behavior of the routing algorithm. We also explore properties of the equilibrium routing probabilities, and provide illustrative simulation results.
A hybrid home network is a network consisting of hybrid devices capable of both Wi-Fi and powerline communications. We provide a comparison of coverage and capacity between hybrid, standalone Wi-Fi, and standalone powerline networks. We demonstrate that hybrid networks improve both the coverage and the capacity of a home network to simultaneously support high definition video streaming and mobile devices. The analysis is extended to show that the benefits of hybrid networks are amplified when multi-hop topologies are supported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.