Nowadays, increasing population, widespread urbanization, rise in living standards together with versatile use of polymers have caused non-biodegradable polymeric wastes affecting the environment a chronic global problem, simultaneously, the existing high energy demand in our society is a matter of great concern. Hence forth, this review article provides an insight into the technological approach of pyrolysis emphasizing catalytic pyrolysis for conversion of polymeric wastes into energy products and presents an alternative waste management technique which is a leap towards developing sustainable environment. Pyrolysis of waste non-biodegradable polymer materials involves controlled thermal decomposition in the absence of oxygen, cracking their macromolecules into lower molecular weight ones, resulting into the formation of a wide range of products from hydrogen, hydrocarbons to coke. Nanocatalyzed pyrolysis is a recommended solution to the low thermal conductivity of polymers, promoting faster reactions in breaking the CC bonds at lower temperatures, denoting less energy consumption and enabling enhancement in the process selectivity, whereby higher value added products are generated with increased yield. Nanotechnology plays an indispensable role in academic research as well as in industrial applications. Existing reviews illustrate that one of the oldest application field of nanotechnology is in the arena of nanocatalysis. Nanocatalysis closes the gap between homo and heterogeneous catalyses while combines their advantageous characteristics and positive aspects, reducing the respective drawbacks. During the current nanohype, nanostructured catalysts are esteemed materials and their exploration provide promising solutions for challenges from the perspective of cost and factors influencing catalytic activity, due to their featured high surface area to volume ratio which render enhanced properties with respect to the bulk catalyst.
As a powerful tool, nanoenzyme electrocatalyst broadens the ways to explore bioinspired solutions to the world's energy and environmental concerns. Efforts of fashioning novel nanoenzymes for effective electrode functionalization is generating innovative viable catalysts with high catalytic activity, low cost, high stability and versatility, and ease of production. High chemo‐selectivity and broad functional group tolerance of nanoenzyme with an intrinsic enzyme like activity make them an excellent environmental tool. The catalytic activities and kinetics of nanoenzymes that benefit the development of nanoenzyme‐based energy and environmental technologies by effectual electrode functionalization are discussed in this article. Further, a deep‐insight on recent developments in the state‐of‐art of nanoenzymes either in terms of electrocatalytic redox reactions (viz. oxygen evolution reaction, oxygen reduction reaction, nitrogen reduction reaction and hydrogen evolution reaction) or environmental remediation /treatment of wastewater/or monitoring of a variety of pollutants. The complex interdependence of the physicochemical properties and catalytic characteristics of nanoenzymes are discussed along with the exciting opportunities presented by nanomaterial‐based core structures adorned with nanoparticle active‐sites shell for enhanced catalytic processes. Thus, such modular architecture with multi‐enzymatic potential introduces an immense scope of making its economical scale‐up for multielectron‐fuel or product recovery and multi‐pollutant or pesticide remediation as reality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.