Abstract-A systematic design of practicable media suitable for re-writeable, ultra-high density (> 1Tbit/sq.in.), high data rate (> 1Mbit/s/tip) scanning probe phase-change memories is presented. The basic design requirements were met by a Si/TiN/GST/DLC structure, with properly tailored electrical and thermal conductivities. Various alternatives for providing re-writeability were investigated. In the first case amorphous marks were written into a crystalline starting phase and subsequently erased by re-crystallization, as in other already-established phasechange memory technologies. Results imply that this approach is also appropriate for probe-based memories. However, experimentally the successful writing of amorphous bits using scanning electrical probes has not been widely reported. In light of this a second approach has been studied, that of writing crystalline bits in an amorphous starting matrix, with subsequent erasure by re-amorphization. With conventional phase-change materials, such as continuous films of Ge 2 Sb 2 Te 5 , this approach invariably leads to the formation of a crystalline 'halo' surrounding the erased (re-amorphized) region, with severe adverse consequences on the achievable density. Suppression of the 'halo' was achieved using patterned media or slow-growth phase-change media, with the latter seemingly more viable.
A mark-length write strategy for multiterabit per square inch scanned-probe memories is described that promises to increase the achievable user density by at least 50%, and potentially up to 100% or more, over conventional approaches. The viability of the write strategy has been demonstrated by experimental scanning probe write/read measurements on phase-change (GeSbTe) media. The advantages offered by adopting mark-length recording are likely to be equally applicable to other forms of scanned probe storage.
An open access repository of Middlesex University research http://eprints.mdx.ac.uk Al-Jawad, Ahmed, Shah, Purav, Gemikonakli, Orhan ORCID: https://orcid.org/0000-0002-0513-1128 and Trestian, Ramona (2018) LearnQoS: a learning approach for optimizing QoS over multimedia-based SDNs. In: IEEE International Symposium on Broadband Multimedia Systems and Broadcasting,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.