In this paper, we present a computationally efficient technique based on the Method of Lines for the approximation of the Bermudan option values via the associated partial differential equations. The method of lines converts the Black Scholes partial differential equation to a system of ordinary differential equations. The solution of the system of ordinary differential equations so obtained only requires spatial discretization and avoids discretization in time. Additionally, the exact solution of the ordinary differential equations can be obtained efficiently using the exponential matrix operation, making the method computationally attractive and straightforward to implement. An essential advantage of the proposed approach is that the associated Greeks can be computed with minimal additional computations. We illustrate, through numerical experiments, the efficacy of the proposed method in pricing and computation of the sensitivities for a European call, cash-or-nothing, powered option, and Bermudan put option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.