Dietary supplementation with lactic acid bacteria to maintain or improve intestinal health is advocated. Weissella spp. are present in different fermented vegetable‐based foods like kimchi, as well as in the normal gastrointestinal (GI) tract of humans. Weissella cibaria strains have been proposed as potential probiotics. Freeze‐drying is a promising treatment method for these strains for industrial applications and to increase the accessibility of their health‐promoting benefits. Moreover, probiotic strains need to be able to survive in the host GI tract, and acid and bile are both environmental stressors that can reduce strain survival. Therefore, this study evaluated the effect of the combination of protective agents on the acid and bile resistance of W. cibaria JW15 after freeze‐drying. A protective agent combination with a 1:1 ratio of 5 g + 5 g/100 ml w/v soy flour + yeast extract (SFY) retained nearly 100% viability after freeze‐drying and was resistant to artificial bile acids. Remarkably, skim milk + soy flour (SSF) was resistant to an acidic solution, and the viability of W. cibaria JW15 in artificial gastric acid was enhanced when treated with this mixture. Furthermore, SFY and SSF were found to maintain high numbers of viable cells with a low specific rate of cell death (k) after storage at 50°C, 60°C, and 70°C. These results support an effective probiotic formulation system with a high number of viable cells, and its protective effects can be leveraged in the development of probiotic products with health benefits.
The objectives of this study were to characterize the physicochemical properties of ginger (Zingiber officinale Rosc.) and the optimum extract processing condition to increase the solubilization efficiency of 6-gingerol and polysaccharides disintegration. The physicochemical properties were investigated under high-pressure enzyme (HP) and enzyme (WB) treatment conditions such as reaction time (1, 2, 3 h), pressure (50, 70, 100 MPa) and sample types, and cell wall degradation enzyme (hemicellulase, cellulase, pectinase, glucosidase, etc.) The effect of high-pressure enzyme treatment depending on sample types was significantly highest in the freeze-dried ginger powder. The optimum condition for high-pressure enzyme treatment was with Pectinex Ultra SP-L (Pec) enzymes for 2 h at 50°C and 100 MPa. Water soluble indexes increased 4.6 and 3.8 times more compared to CON (15.35%) while total polyphenol contents increased by 1.8 and 1.7 times compared to CON (1.43%). The total contents of indicator components such as 6, 8, 10-gingerol and shogaol was 1.53%, increasing 2.7 times more compared to CON (0.57%) with a significant difference (p<0.001). The high-pressure and enzymatic approach described in this study would be beneficial to food industries for developing ginger functional product and materials.
The delivery of active probiotic cells in capsules can reduce probiotic cell loss induced by detrimental external factors during digestion. In this study, we determined the optimal conditions for the encapsulation of Weissella cibaria JW15 (JW15) within calcium and polyethylene glycol (PEG)-alginate with chicory root extract powder (CREP). JW15 was encapsulated as the core material (10 9 cells/mL, 2 mL/min), and a solution containing a mixture of 1.5% sodium alginate and 1% CREP was extruded into a receiving bath with 0.1 M calcium chloride (CaCl 2 ) and 0.05% PEG. Capsule morphology and size were measured using optical microscopy. The optimal air pressure and frequency vibration for capsules containing alginate only (Al) were 200 mbar and 200 Hz, respectively and 100 mbar and 350 Hz for capsules containing alginate with CREP (Ch), respectively. The voltage for both capsules types was fixed at 1.35 kV. Then, the capsules were incubated in a simulated gastrointestinal (GI) system for 6 hr at 37°C. The addition of PEG in a CaCl 2 hardening solution led to degradation of the Ch capsule (Ch-PEG) and the release of cells into the small intestine vessel in the simulated GI system. By contrast, the cells were trapped within the Al capsules. Based on these data, effective encapsulation using alginate with CREP and PEG can enable JW15 to be released at a targeted anatomical site of activity within the GI system, thereby, enhancing the efficacy of probiotic cells. These protective effects can be leveraged during the development of probiotic products.Practical Application: Weissella cibaria JW15 (10 9 cells/mL) was encapsulated in biodegradable and biocompatible capsules, prepared by mixing 1.5% alginate with 1% chicory root extract powder (CREP) in 0.1 M CaCl 2 and 0.05% PEG using an encapsulator. The optimal processing parameters were as follows: pressure, 100 mbar; vibration frequency, 350 Hz; voltage, 1.35 kV; and core flow rate, 2 mL/min. When the resulting capsules were subjected to a simulated gastrointestinal system for 6 hr, the cells were released into the small intestine, and up to 95% cell viability was preserved. These results suggest that capsules made from alginate with CREP and formulated using calcium and PEG are a promising delivery system for probiotic cells. Further reproduction without permission is prohibitedThe encapsulation efficiency (EE) of the probiotics was calculated using the following expression (Haghshenas et al., 2015): EE (%) = (Xt/Xi) ×100, where Xt is the viability of JW15 in
In this study, the antioxidant effects of Zingiber officinale Roscoe leaves and stems which have been registered as new food ingredients were comparatively analyzed with Z. officinale Rosc. roots. The increase in antioxidant activity was concentration-dependent in all extracts, and excellent antioxidant activity was confirmed in the roots (58%) and leaves (35%) at 100 µg/mL. The inhibitory effect of nitric oxide production was found in all samples. In particular, the leaves showed an inhibitory rate of 25∼31%, an effect similar to that of the roots (22∼37%), confirming their excellent efficacy. The stems showed a 24∼26% inhibition rate, but the inhibition was not concentration-dependent. The inhibitory effect of the roots, stems and leaves of Z. officinale Rosc. on the reactive oxygen species production was highest in the roots (21∼46%), followed by leaves (15∼30%) and stems (2∼11%). Cu/Zn-superoxide dismutase (SOD) and Mn-SOD mRNA expressions were increased to high levels by the leaves. Glutathione peroxidase and catalase levels were in the increased in the roots, leaves, and stems, in that order. Through the results of this study, the antioxidant effects of Z. officinale Rosc. leaves and stems were confirmed, and excellent antioxidant activity was confirmed in the leaves. Z. officinale Rosc. leaves can therefore be considered for use as an antioxidant functional health food material in the future. However, since studies on the leaves are insufficient, additional studies in animals are needed to investigate the mechanism of the physiological activity of Z. officinale Rosc. leaves in the body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.