Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005–2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from 7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study.
African swine fever (ASF) is a severe haemorrhagic disease of domestic and wild pigs caused by the African swine fever virus (ASFV). In recent years, ASF has steadily spread towards new geographical areas, reaching Europe and Asia. On January 15th, 2019, Mongolia reported its first ASF outbreak to the World Organization for Animal Health (OIE), becoming, after China, the second country in the region affected by the disease. Following an event of unusual mortality in domestic pigs in Bulgan Province, a field team visited four farms and a meat market in the region to conduct an outbreak investigation and collect samples for laboratory analysis. Different organs were examined for ASF associated lesions, and total nucleic acid was extracted for real‐time PCR, virus isolation and molecular characterization. The real‐time PCR results confirmed ASFV DNA in 10 out of 10 samples and ASFV was isolated. Phylogenetic analysis established that ASFVs from Mongolia belong to genotype II and serogroup 8. The viruses were identical to each other, and to domestic pig isolates identified in China and Russia, based on the comparison of five genomic targets. Our results suggest a cross‐border spread of ASFV, without indicating the source of infection.
Between August and September 2016 pathological samples were collected from sheep and goats following suspected peste des petits ruminants (PPR) outbreaks in western Mongolia. RT-PCR followed by sequencing and phylogenetic analysis of the samples confirmed the presence of a PPR virus belonging to lineage IV. A full genome analysis of the viral RNA from one of the samples revealed a high similarity (99.0-99.5%) with PPR viruses currently circulating in China (2013-2015) indicating a common origin. This is the first genetic characterization of PPR virus in Mongolia and the data generated will have important implications for control and management of the disease in the region.
BackgroundSince the emergence of H5N1 high pathogenicity (HP) avian influenza virus (AIV) in Asia, numerous efforts worldwide have focused on elucidating the relative roles of wild birds and domestic poultry movement in virus dissemination. In accordance with this a surveillance program for AIV in wild birds was conducted in Mongolia from 2005-2007. An important feature of Mongolia is that there is little domestic poultry production in the country, therefore AIV detection in wild birds would not likely be from spill-over from domestic poultry.ResultsDuring 2005-2007 2,139 specimens representing 4,077 individual birds of 45 species were tested for AIV by real time RT-PCR (rRT-PCR) and/or virus isolation. Bird age and health status were recorded. Ninety rRT-PCR AIV positive samples representing 89 individual birds of 19 species including 9 low pathogenicity (LP) AIVs were isolated from 6 species. A Bar-headed goose (Anser indicus), a Whooper swan (Cygnus cygnus) and 2 Ruddy shelducks (Tadorna ferruginea) were positive for H12N3 LP AIV. H16N3 and H13N6 viruses were isolated from Black-headed gulls (Larus ridibundus). A Red-crested pochard (Rhodonessa rufina) and 2 Mongolian gulls (Larus vagae mongolicus) were positive for H3N6 and H16N6 LP AIV, respectively. Full genomes of each virus isolate were sequenced and analyzed phylogenetically and were most closely related to recent European and Asian wild bird lineage AIVs and individual genes loosely grouped by year. Reassortment occurred within and among different years and subtypes.ConclusionDetection and/or isolation of AIV infection in numerous wild bird species, including 2 which have not been previously described as hosts, reinforces the wide host range of AIV within avian species. Reassortment complexity within the genomes indicate the introduction of new AIV strains into wild bird populations annually, however there is enough over-lap of infection for reassortment to occur. Further work is needed to clarify how AIV is maintained in these wild bird reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.