In this paper, a cooperative underwater multi-channel MAC (CUMAC) protocol has been proposed with both delay mapping and channel allocation assessment in order to improve network performance and handle triple hidden terminal (THT) problems in underwater sensor networks. A novel channel allocation matrix (CAM) was developed for estimating propagation delay and increasing utilization of channel. In the proposed scheme, every node maintains a database for delay mapping, based on which the sender runs a scheduling algorithm prior to transmitting any data. This delay mapping database assists a node in predicting packet collision probability. The overall objectives are-first, to increase the rate of successful transmission through mitigation of THT problems in multi-channel underwater sensor networks; and second, to increase channel utilization leveraging the database of delay mapping and channel allocation assessment. Results from performance evaluation demonstrate the efficiency of the proposed CUMAC-CAM protocol in terms of packet delivery ratio, energy consumption, end-to-end delay, network throughput, collision probability, packet loss ratio and fairness index compared to the contemporary CUMAC protocol and RTS/CTS based multi-channel MAC protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.