Rutile is the most stable and widely distributed TiO 2 polymorph in rocks of low-to high-grade metamorphic facies and is also an accessory mineral in igneous rocks. Rutile is commonly available in modern to ancient placer mineral deposits in the coastal sediments. Mineral chemistry of rutile from red sediments and modern sands along Bhimunipatnam-Konada coast were used in the present study to know its provenance. Iron (Fe), chromium (Cr), niobium (Nb) content and their distribution pattern in rutile and also their relationships with aluminum (Al) and magnesium (Mg) concentrations provide information on its provenance. These study reveals that the Fe-Cr and Cr-Nb systematics indicates majority of rutiles were derived from metapelitic rocks mainly khondalites and leptynites of the Eastern Ghats Granulite Belt (EGGB) and minor contribution is from magmatic charnockites, pegmatites and granites. The Al and Mg behavioral pattern in rutile from both zones clearly depicts that the most of the rutiles are derived from crustal rocks. The rutile contribution to late quaternary red sediments and modern coastal sands is also from same provenance.
Coarse-grained simulations have emerged as a valuable tool in the study of large and complex biomolecular systems. These simulations, which use simplified models to represent complex biomolecules, reduce the computational cost of simulations and enable the study of larger systems for longer periods of time than traditional atomistic simulations. GROMACS is a widely used software package for performing coarse-grained simulations of biomolecules, and several force fields have been developed specifically for this purpose. In this protocol paper, we explore the advantages of using coarse-grained simulations in the study of biomolecular systems, focusing specifically on simulations performed using GROMACS. We discuss the force fields required for these simulations and the types of research questions that can be addressed using coarse-grained simulations. We also highlight the potential benefits of coarse-grained simulations for the development of new force fields and simulation methodologies. We then discuss the expected results from coarse-grained simulations using GROMACS and the various techniques that can be used to analyze these results. We explore the use of trajectory analysis tools, as well as thermodynamic and structural analysis techniques, to gain insight into the behavior of biomolecular systems.
Multi-storey buildings tend to get damaged mainly during earthquake. Seismic analysis is a tool for the estimation of structural response in the process of designing earthquake resistant structures and/or retrofitting vulnerable existing structures. The principle purpose of this work is to analyze and design a building with a shear wall and also to find the appropriate position of shear wall that result in maximum resistance towards lateral forces and minimum displacement of the structure. In this study, a G+7 multi-storey building of 15 m ×20 m in plan area has been chosen and modelled using ETABS. The developed model was validated by solving manually and the results were validated in ETABS. Thereafter, 4 different new plans were modelled in ETABS located in the same earthquake zone area. These plans have shear wall concepts are implemented on the building at four different locations. Seismic, vibration and response spectrum analysis were performed on these structures. Salient parameters such as storey stiffness, storey displacement and storey drift were computed using the ETABS model. These were compared with that of the frame having no shear walls. By comparing the results obtained at different shear wall locations, the best plan with the shear wall having minimum lateral storey displacement and maximum stiffness is suggested for this location.
Mineral chemistry of the ilmenites, drawn from the red sediments along the Bhimunipatnam coast, Andhra Pradesh, India was determined by EPMA technique. The major constituents are TiO2 and FeO, and the value of Ti/(Ti + Fe) < 0.5 of these ilmenites indicate that they are relatively fresh ‘ferrian ilmenites’ and were contributed recently to the red sediments in the study area. Using the mineral chemical data, the end-member composition of the analyzed ilmenites was calculated, which reveals that they are of ‘ilmenite - hematite’ and ‘ilmenite - geikielite - hematite’ composition, derived from calc-alkaline magma-sourced charnockites and metapelitic khondalite suite of rocks respectively of the Eastern Ghats granulite belt. The TiO2 content and Mn/Mg ratio of the study ilmenites indicate that these rocks constitute their provenance in the Gosthani river basin. Their back scattered electron (BSE) and scanning electron (SEM) images show their prominent sub-angular to sub-rounded shape, corroborating the study under microscope, with some preserving signatures of exsolution intergrowth, earlier deformation and rounded shape, all of which are attributed to their transportation by the Gosthani river, after their liberation from their provenance rocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.