Improvement in angiogenesis using mesenchymal stem cells (MSCs) is evolving as an option in patients with vascular insufficiencies. The paracrine factors secreted by MSCs have been attributed to the angiogenic response. This study was conducted to identify the factors secreted by umbilical cord-derived MSCs (UCMSCs) that might play a role in angiogenesis. To this aim, we evaluated the presence of well known proangiogenic factors in the conditioned media (CM) derived from UCMSCs by ELISA. While vascular endothelial growth factor (VEGF), a well known angiogenic factor, was not detected in the CM, gene expression was nevertheless detected in these cells. Further investigations revealed the presence of soluble VEGF receptors (sVEGF-R1 and R2) that were capable of neutralizing exogenous VEGF. Human umbilical cord vein-derived endothelial cells exposed in vitro to CM, in comparison to control media, showed improved migration (P < 0.007) and capillary-like network formation (P < 0.001) with no significant change in endothelial cell proliferation. The angiogenic response observed with the paracrine factors secreted by UCMSC could be due to the presence of significant levels of a metalloprotease and matrix metalloproteases-2 (237.4 -47
Restoration of cutaneous pigmentation has been achieved in stable vitiligo by autologous melanocyte transplantation. This study was aimed to develop a methodology to deliver melanocytes to vitiliginous area following their processing and culture in a centralized facility. Here we report a methodology to culture melanocytes on carrier films, transport the cells, and graft them on vitiliginous areas. The salient features of this study include: 1) development of polylactic acid (PLA) films that support melanocyte attachment, growth, and delivery; 2) establish transport conditions for skin biopsies from hospitals; 3) establish transport conditions for cultured cells from cell processing center to hospitals. Results suggest that PLA films could serve as carriers for melanocytes during transport. "Upside-down" application of the graft results in the migration of cells from the films into the dermabraded area. The transport conditions ensure cell viability for 96 h. This system could help clinicians, who do not have access to cell culture facilities, transplant cultured melanocytes in a cost-effective manner.
A dermal tissue construct composed of human dermal fibroblasts and a chitosan sponge has been developed, targeted towards the treatment of diabetic nonhealing ulcers. The construct has been designed in a way that the dermal fibroblasts are arranged as a three-dimensional sheet adhered entirely on one side of the chitosan sponge. This design would allow maximal diffusion of growth factors from the cells to the wound bed when the construct is applied on the wound with the cellular sheet side making contact with the wound bed. The diffusion of secreted growth factors would take place directly from cells to the wound bed without being impeded by a matrix. The cells are present at a high density in the dermal construct, which would aid in accelerated wound healing. The construct has a porous chitosan sponge base, which would allow gas exchange, and renders the dermal construct very flexible so that it would take the shape of the wound contours well, while having mechanical integrity. The viability of cells in the construct is greater than 90%. The dermal construct produces a high amount of vascular endothelial growth factor, from 42 ng to 31 ng in 24 h. The construct also produces high amounts of Interleukin-8 (IL-8), from 375 ng to 1065 ng in the first 24 h. Both VEGF and IL-8 have important roles in the healing of chronic diabetic ulcers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.