Over the past few years, with the advent of blockchain technology, there has been a massive increase in the usage of Cryptocurrencies. However, Cryptocurrencies are not seen as an investment opportunity due to the market's erratic behavior and high price volatility. Most of the solutions reported in the literature for price forecasting of Cryptocurrencies may not be applicable for real-time price prediction due to their deterministic nature. Motivated by the aforementioned issues, we propose a stochastic neural network model for Cryptocurrency price prediction. The proposed approach is based on the random walk theory, which is widely used in financial markets for modeling stock prices. The proposed model induces layer-wise randomness into the observed feature activations of neural networks to simulate market volatility. Moreover, a technique to learn the pattern of the reaction of the market is also included in the prediction model. We trained the Multi-Layer Perceptron (MLP) and Long Short-Term Memory (LSTM) models for Bitcoin, Ethereum, and Litecoin. The results show that the proposed model is superior in comparison to the deterministic models. INDEX TERMS Cryptocurrency, multilayer perceptron, long short-term memory, random walk, stochasticity.
Throughout the history of modern finance, very few financial instruments have been as strikingly volatile as cryptocurrencies. The long-term prospects of cryptocurrencies remain uncertain; however, taking advantage of recent advances in neural networks and volatility, we show that the trading algorithms reinforced by short-term price predictions are bankable. Traditional trading algorithms and indicators are often based on mean reversal strategies that do not advantage price predictions. Furthermore, deterministic models cannot capture market volatility even after incorporating price predictions. Thus motivated by these issues, we integrate randomness in the price prediction models to simulate stochastic behavior. This paper proposes hybrid trading strategies that take advantage of the traditional mean reversal strategies alongside robust price predictions from stochastic neural networks. We trained stochastic neural networks to predict prices based on market data and social sentiment. The backtesting was conducted on three cryptocurrencies: Bitcoin, Ethereum, and Litecoin, for over 600 days from August 2017 to December 2019. We show that the proposed trading algorithms are better when compared to the traditional buy and hold strategy in terms of both stability and returns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.