Human T cells coordinate adaptive immunity in diverse anatomic compartments through production of cytokines and effector molecules, but it is unclear how tissue site influences T cell persistence and function. Here, we use single cell RNA-sequencing (scRNA-seq) to define the heterogeneity of human T cells isolated from lungs, lymph nodes, bone marrow and blood, and their functional responses following stimulation. Through analysis of >50,000 resting and activated T cells, we reveal tissue T cell signatures in mucosal and lymphoid sites, and lineage-specific activation states across all sites including distinct effector states for CD8+ T cells and an interferon-response state for CD4+ T cells. Comparing scRNA-seq profiles of tumor-associated T cells to our dataset reveals predominant activated CD8+ compared to CD4+ T cell states within multiple tumor types. Our results therefore establish a high dimensional reference map of human T cell activation in health for analyzing T cells in disease.
Graphical Abstract Highlights d High-resolution map of human NK cells shows tissue-driven distribution across ages d Differentiated NK cells predominate in blood, bone marrow, spleen, and lungs d Tissue-resident NK cells exhibit specific adaptations in mucosal and lymphoid sites d Lymph nodes and intestines are reservoirs for precursor and immature NK cells
Defining adaptive immunity with the complex structures of the human gastrointestinal (GI) tract over life, is essential for understanding immune responses to ingested antigens, commensal and pathogenic microorganisms, and dysfunctions in disease. We present here an analysis of lymphocyte localization and T cell subset composition across the human GI tract including mucosal sites (jejunum, ileum, colon), gut-associated lymphoid tissues (isolated lymphoid follicles (ILFs), Peyer’s patches (PPs), appendix) and mesenteric lymph nodes (MLNs) from a total of 68 donors spanning 8 decades of life. In pediatric donors, ILFs and PP containing naïve T cells and regulatory T cells (Tregs) are prevalent in jejunum and ileum, respectively; these decline in frequency with age, contrasting stable frequencies of ILFs and T cell subsets in the colon. In the mucosa, tissue resident memory T cells develop during childhood, and persist in high frequencies into advanced ages, while T cell composition changes with age in GALT and MLN. These spatial and temporal features of human intestinal T cell immunity define signatures that can be used to train predictive machine learning algorithms. Our findings demonstrate an anatomic basis for age-associated alterations in immune responses, and establish a quantitative baseline for intestinal immunity to define disease pathologies.
Invariant natural killer T cells have a distinct developmental pathway from conventional αβ T cells. Here we demonstrate that the transcriptional repressor NKAP is required for invariant natural killer T cell but not conventional T cell development. In CD4-cre NKAP conditional knockout mice, invariant natural killer T cell development is blocked at the double-positive stage. This cell-intrinsic block is not due to decreased survival or failure to rearrange the invariant Vα14-Jα18 T cell receptor-α chain, but is rescued by overexpression of a rec-Vα14-Jα18 transgene at the double-positive stage, thus defining a role for NKAP in selection into the invariant natural killer T cell lineage. Importantly, deletion of the NKAP-associated protein histone deacetylase 3 causes a similar block in the invariant natural killer T cell development, indicating that NKAP and histone deacetylase 3 functionally interact to control invariant natural killer T cell development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.