Clinical implementation of pharmacogenomics will help in personalizing drug prescriptions and alleviate the personal and financial burden due to inefficacy and adverse reactions to drugs. However, such implementation is lagging in many parts of the world, including the Middle East, mainly due to the lack of data on the distribution of actionable pharmacogenomic variation in these ethnicities. We analyzed 6,045 whole genomes from the Qatari population for the distribution of allele frequencies of 2,629 variants in 1,026 genes known to affect 559 drugs or classes of drugs. We also performed a focused analysis of genotypes or diplotypes of 15 genes affecting 46 drugs, which have guidelines for clinical implementation and predicted their phenotypic impact. The allele frequencies of 1,320 variants in 703 genes affecting 299 drugs or class of drugs were significantly different between the Qatari population and other world populations. On average, Qataris carry 3.6 actionable genotypes/diplotypes, affecting 13 drugs with guidelines for clinical implementation, and 99.5% of the individuals had at least one clinically actionable genotype/diplotype. Increased risk of simvastatin-induced myopathy could be predicted in ~32% of Qataris from the diplotypes of SLCO1B1, which is higher compared to many other populations, while fewer Qataris may need tacrolimus dosage adjustments for achieving immunosuppression based on the CYP3A5 diplotypes compared to other world populations. Distinct distribution of actionable pharmacogenomic variation was also observed among the Qatari subpopulations. Our comprehensive study of the distribution of actionable genetic variation affecting drugs in a Middle Eastern population has potential implications for preemptive pharmacogenomic implementation in the region and beyond.
Allelic diversity of human leukocyte antigen (HLA) class II genes may help maintain humoral immunity against infectious diseases. In this study, we investigated germline genetic variation in classical HLA class II genes and employed a systematic, unbiased approach to explore the relative contribution of this genetic variation in the antibody repertoire to various common pathogens. We leveraged a well-defined cohort of 800 adults representing the general Arab population in which genetic material is shared because of the high frequency of consanguineous unions. By applying a high-throughput method for large-scale antibody profiling to this well-defined cohort, we were able to dissect the overall effect of zygosity for classical HLA class II genes, as well as the effects associated with specific HLA class II alleles, haplotypes and genotypes, on the antimicrobial antibody repertoire breadth and antibody specificity with unprecedented resolution. Our population genetic studies revealed that zygosity of the classical HLA class II genes is a strong predictor of antibody responses to common human pathogens, suggesting that classical HLA class II gene heterozygosity confers a selective advantage. Moreover, we demonstrated that multiple HLA class II alleles can have additive effects on the antibody repertoire to common pathogens. We also identified associations of HLA-DRB1 genotypes with specific antigens. Our findings suggest that HLA class II gene polymorphisms confer specific humoral immunity against common pathogens, which may have contributed to the genetic diversity of HLA class II loci during hominine evolution.
Background Historically diagnosis and prognosis of myeloid disorders including acute myeloid leukemia (AML) have been determined using a combination of morphology, immunophenotype, cytogenetic and more recently single gene, if not single mutation, analysis. The introduction of NGS technology has resulted in an explosion in the quantity of mutation data available. However, the feasibility and utility of NGS technology with regards to decision-making in routine clinical practice of myeloid disorders is currently unknown. We therefore developed an advanced NGS tool for simultaneous assessment of multiple myeloid candidate genes from low amounts of input DNA and present clinical utility analysis below. Methods We designed a targeted resequencing assay using a TruSeq Custom Amplicon panel with the MiSeq platform (both Illumina) consisting of 341 amplicons (~56 kb) designed around exons of genes frequently mutated in myeloid malignancies (ASXL1, ATRX, CBL, CBLB, CBLC, CEBPA, CSF3R, DNMT3a, ETV6, EZH2, FLT3, HRAS, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NPM1, NRAS, PDGFRA, PHF6, PTEN, RUNX1, SETBP1, SF3B1, SRSF2, TET2, TP53, U2AF1, WT1 & ZRSR2). Filtering, variant calling and annotation were performed using Basespace and Variant Studio (Illumina) with additional indel detection achieved using Pindel. A cohort of samples previously characterised with conventional techniques was used for validation and the lower limit of detection established using qPCR. Post-validation, DNA from 152 diagnostic blood or bone marrow samples from patients with confirmed or suspected myeloid disorders; both AML (n=46) and disorders with the potential to transform to AML i.e. myelodysplasia (confirmed n=54, suspected n=10) and myeloproliferative neoplasms (n=42), were analysed using this assay. To gather clinical utility data we developed a reporting algorithm to feed back information to clinicians; only those variants with a variant allele frequency (VAF) of >10% and described as acquired in publically available databases were reported with the exception of novel mutations predicted to result in a truncated protein. Further utility data was obtained using published mutation algorithms to determine the proportion of patients in whom mutation data altered prognosis. Results In the validation cohort, initial concordance for detection of clinically significant mutations was 88% rising to 100% once Pindel was used to identify FLT3 ITDs. The lower limit of detection was 3% VAF, and mean amplicon coverage was 390 reads. Using our reporting algorithm 66% of patients in the post-validation cohort had a suspected pathogenic mutation relevant to a myeloid disorder, rising to 74% in patients with confirmed diagnoses. The median number of reported variants per sample for all diagnoses was one (range 0-6). When mutation data for patients with AML with intermediate risk cytogenetics was analysed using the algorithm of Patel et al (N Engl J Med. 2012;366:1079-1089), 4/22 (18%) moved into another risk category. A further two patients had double CEBPA mutations, improving their prognosis. Identification of complex mutations in KIT exon 8 in 2/6 patients with core binding factor AML resulted in more intensive MRD monitoring due to the increased risk of relapse. Interpretation of mutation data for patients with confirmed myelodysplasia using the work of Bejar et al (N Engl J Med. 2011;364:2496-2506) revealed 13/54 (24%) had a high risk mutation independently associated with poor overall survival. 2/8 (25%) patients with chronic myelomonocytic leukemia and 1/12 (8.3%) patients with primary myelofibrosis had high risk ASXL1 exon 12 mutations, independently associated with a poor prognosis. Among suspected diagnoses confirmatory mutations were found in 2/19 (11%), while the absence of mutations reduced the probability of myeloid disease in 11/19 (58%), in some cases sparing elderly patients invasive bone marrow sampling. A further 20 patients had clinically relevant mutations. Conclusions The NGS Myeloid Gene Panel provided extra information to clinicians in 57/152 patients (38%) helping inform diagnosis, individualize disease monitoring schedules and support treatment decisions. The targeted panel approach requires rigorous validation and standardisation in particular of bio-informatics pipelines, but can be adapted to incorporate new genes as their relevance is described and will become central to treatment decisions. Disclosures No relevant conflicts of interest to declare.
Expansion of trinucleotide repeat DNA of the classes CAG-CTG, CGG-CCG and GAA-TTC are found to be associated with several neurodegenerative disorders. Different mechanisms have been attributed to the expansion of triplets, mainly involving the formation of alternate secondary structures by such repeats. This paper reports the molecular dynamics simulation of triplet repeat DNA sequences to study the basic structural features of DNA that are responsible for the formation of structures such as hairpins and slip-strand DNA leading to expansion. All the triplet repeat sequences studied were found to be more flexible compared to the control sequence unassociated with disease. Moreover, flexibility was found to be in the order CAG-CTG > CGG-CCG approximately GAA-TTC, the highly flexible CAG-CTG repeat being the most common cause of neurodegenerative disorders. In another simulation, a single G-C to T-A mutation at the 9th position of the CAG-CTG repeat exhibited a reduction in bending compared to the pure 15-mer CAG-CTG repeat. EPM1 dodecamer repeat associated with the pathogenesis of progressive myoclonus epilepsy was also simulated and showed flexible nature suggesting a similar expansion mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.