The paper presents a near investigation of different AI procedures for solar power forecasting. The objective of the research is to identify the most accurate and efficient machine learning algorithms for solar power forecasting. The paper also considers different parameters such as weather conditions, solar radiation, and time of day in the forecasting model. This paper proposes a hybrid machine learning model for solar power forecasting that consolidates the strengths of multiple algorithms, including support vector regression, random forest regression, and artificial neural network. However, the study also highlights the importance of incorporating domain knowledge and feature engineering in machine learning models for better forecasting accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.