Artificial intelligence (AI) is an excellent potential technology that is evolving day-to-day and a critical avenue for exploration in the world of computer science & engineering. Owing to the vast volume of data and the eventual need to turn this data into usable knowledge and realistic solutions, artificial intelligence approaches and methods have gained substantial prominence in the knowledge economy and community world in general. AI revolutionizes and raises athletics to an entirely different level. Although it is clear that analytics and predictive research have long played a vital role in sports, AI has a massive effect on how games are played, structured, and engaged by the public. Apart from these, AI helps to analyze the mental stability of the athletes. This research proposes the Artificial Intelligence assisted Effective Monitoring System (AIEMS) for the specific intelligent analysis of sports people’s psychological experience. The comparative analysis suggests the best AI strategies for analyzing mental stability using different criteria and resource factors. It is observed that the growth in the present incarnation indicates a promising future concerning AI use in elite athletes. The study ends with the predictive efficiency of particular AI approaches and procedures for further predictive analysis focused on retrospective methods. The experimental results show that the proposed AIEMS model enhances the athlete performance ratio of 98.8%, emotion state prediction of 95.7%, accuracy ratio of 97.3%, perception level of 98.1%, and reduces the anxiety and depression level of 15.4% compared to other existing models.
PurposeAdequate resources for learning and training the data are an important constraint to develop an efficient classifier with outstanding performance. The data usually follows a biased distribution of classes that reflects an unequal distribution of classes within a dataset. This issue is known as the imbalance problem, which is one of the most common issues occurring in real-time applications. Learning of imbalanced datasets is a ubiquitous challenge in the field of data mining. Imbalanced data degrades the performance of the classifier by producing inaccurate results.Design/methodology/approachIn the proposed work, a novel fuzzy-based Gaussian synthetic minority oversampling (FG-SMOTE) algorithm is proposed to process the imbalanced data. The mechanism of the Gaussian SMOTE technique is based on finding the nearest neighbour concept to balance the ratio between minority and majority class datasets. The ratio of the datasets belonging to the minority and majority class is balanced using a fuzzy-based Levenshtein distance measure technique.FindingsThe performance and the accuracy of the proposed algorithm is evaluated using the deep belief networks classifier and the results showed the efficiency of the fuzzy-based Gaussian SMOTE technique achieved an AUC: 93.7%. F1 Score Prediction: 94.2%, Geometric Mean Score: 93.6% predicted from confusion matrix.Research limitations/implicationsThe proposed research still retains some of the challenges that need to be focused such as application FG-SMOTE to multiclass imbalanced dataset and to evaluate dataset imbalance problem in a distributed environment.Originality/valueThe proposed algorithm fundamentally solves the data imbalance issues and challenges involved in handling the imbalanced data. FG-SMOTE has aided in balancing minority and majority class datasets.
There are numerous image classification strategies are developed in deep learning. However, due to the complexity of images, conventional image classification strategies have been incapable to meet real application needs. As the amount of pixel information rises, the classification becomes more difficult. However, CNN is widely used method for object identification in picture due to its simple and accurate, but still, it remains hazy which strategies are most supportive for analysing and distinguishing the objects in pictures. In this paper we introduced a CNN network and clustering-based technique called IBCNN to perform classification based on patch extraction. The proposed method can accomplish their goals in the following four different ways: a) Automatic Kernel selection; b) resilient patch size selection; c) CNN layer; and d) pooling layer modification. In addition, it also modifies the pooling layer with average value and calculate the pixel size. The proposed method was applied on ten different image datasets. Finally, the proposed model is compared to three benchmarking models: such as WCNN, MLP, and ELM-CNN to estimate its performance. The obtained results shows that the proposed method gives competitive results compared to the other models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.