Abstract. Calophyllum inophyllum methyl esters have a low oxidation stability value (5-6 h) caused by high amounts of polyunsaturated fatty acid methyl esters (FAME), especially methyl linoleate. Partial hydrogenation was done to reduce the number of polyunsaturated FAME to transform them into mono-unsaturated. This was performed at 6 bar and 900 rpm with Pd/Al 2 O 3 solid catalyst in a reactor with a capacity of 1 liter. The research purpose was to learn the effects of reaction temperature (80; 100; 120°C) and time (1; 1.5; 2 h) on the FAME composition. The optimum condition of the experiment was obtained at 120°C for 1 h, with 15.47 h as the oxidation stability value, 17.8°C as the cloud point value, and 51.17 as the cetane number. Under this condition, the methyl linoleate content decreased by 59.89% w/w (from 21.869% to 8,770% w/w) and methyl linoleate hydrogenated into methyl elaidate. Meanwhile, the methyl linolenate content decreased by 85,37% w/w (from 0.205% to 0.030% w/w) and methyl linolenate hydrogenated into methyl linolelaidate. These results show that the research met the following standards: a minimum oxidation stability value of 10 h in accordance with the World Wide Fuel Charter (WWFC) 2009, a maximum cloud point value of 18°C and a minimum cetane number 51 in accordance with SNI 7182-2012. The physical properties values of the Calophyllum inophyllum methyl esters were predicted using the empirical equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.