Potassium (K) is a macronutrient required by plants for energy production, enzyme activation, formation of cell wall, production of protein, and photosynthesis. However, K in the soil solution is leached from the rhizosphere before it interacts with soil colloids because of the abundance of kaolinite clay minerals in mineral acid soils such as Ultisols and Oxisols. These soils are highly weathered, low in organic matter, low in pH, but high aluminium (Al), and iron (Fe) ions. As a result, K becomes unavailable for plants, and this affects crop production and farmers’ profitability. This problem has steered the attention to the application of amendments to minimise K loss. Animal manures, plant residues, and composts applications are some of the corrective measures taken to improve the K availability in tropical acid soils. However, there is dearth of information on co-application of charcoal and wood ash as soil amendments to improve the K availability and the changes they cause to the dynamic equilibrium of K in mineral acid soils. Hence, this review discusses the dynamics, availability of K, and proposed mechanisms involved when charcoal and wood ash are used to amend tropical acid soils. The optimisation and understanding of the role of charcoal and wood ash co-application as soil amendments have potential benefits to improve the K availability and physicochemical properties of mineral acid soils.
Soil acidity compromises agricultural output in tropical acid soils. Highly weathered tropical acidic soils are characterized by low pH, organic matter, nutrient availability, but high aluminium and iron concentration. Hence, N availability becomes a limiting factor in such soils. To this end, these leaching and pH buffering capacity studies were conducted to determine the effects of co-application of charcoal and sago bark ash on the N leaching or retention and pH buffering capacity of acid soils. The soil leaching experiment was conducted for 30 days by spraying distilled water to each container with soil such that the leachates were collected for analysis. The rate of urea used was fixed at 100% of the recommended rate. The rates of charcoal and sago bark ash were varied by 25%, 50%, 75%, and 100%, respectively, of the recommended rates. The pH buffering capacity was calculated as the negative reciprocal of the slope of the linear regression. The leaching study revealed that the combined use of charcoal, sago bark ash, and urea does not only reduce leaching of NH4+ and NO3− but the approach also improves soil pH, total C, and soil exchangeable NH4+. This effect is related to the fact that the sago bark ash deprotonates the functional groups of charcoal because of its neutralizing components such as Ca, Mg, Na, and K ions. As a result, the combined use of charcoal and sago bark ash was able to retain NH4+ in the soil. The carbonates in the sago bark ash and functional groups of charcoal improve pH buffering capacity. Thus, the combined use of charcoal and sago bark ash improved soil exchangeable NH4+, soil pH, and soil total C, but reduced exchangeable acidity and amount of NH4+ leached out from soil. This study will be further evaluated in a pot trial to confirm the results of the present findings.
Excessive N fertilizer use in agriculture results in the release of inorganic N contaminants into surface and groundwater bodies, and other negative environmental effects. The combined application of N fertilizers with charcoal and sago bark ash could help reduce these negative impacts. The objective of this sorption study was to examine the effects of the co-application of charcoal and sago bark ash with ammonium chloride in regulating the adsorption and release of NH4+ in an acid soil. This soil used in the laboratory study was Bekenu series (Typic Paleudults). The treatments evaluated were: (i) 300 g soil only, (ii) 300 g charcoal only, (iii) 300 g sago bark ash only, (iv) 300 g soil + 15.42 g charcoal, (v) 300 g soil + 7.71 g sago bark ash, and (vi) 300 g soil + 15.42 g charcoal + 7.71 g sago bark ash. Regardless of the concentration of the isonormal solution, sago bark ash (T3) showed the highest NH4+ adsorption at equilibrium (Qe) and NH4+ desorbed (Qde). The results for T3 for Qe and Qde were 3.88 mg L−1 and 3.80 mg g−1, respectively, for the 400 mg N L−1 isonormal solution followed by T2 with values of 3.46 mg L−1 and 3.30 mg g−1, respectively. For treatments T2 and T3 that resulted in higher Qe and Qde for NH4+, soil was not included. However, in practical terms, any of the treatments T4, T5 and T6 that included mixing the amendments with soil are better since the results of these treatments were not significantly different in terms of Qe and Qde for NH4+. This is despite the fact that T4, T5 and T6 resulted in lower Qe and Qde for NH4+ compared to T2 and T3. The results also showed a positive linear relationship between NH4+ adsorption and the addition of N. This indicates that NH4+ can be retained temporarily by the amendments. The insignificant R2 (ranging from 0.10 to 0.38) of the Langmuir regression equations suggest that the NH4+ adsorption data did not fit the Langmuir isotherms well. Future studies could explore fitting the NH4+ sorption data into other sorption models. The higher adsorption of NH4+ by the treatment with charcoal is related to its high number of adsorption sites or negative charges of these materials. Incorporating charcoal and sago bark ash as soil amendments in agriculture has the potential to reduce the usage of chemical fertilizers. The reliance on commercial lime could also be reduced due to the alkaline characteristics of these materials. Therefore, the co-application of charcoal and sago bark ash could contribute to improve the utilization of N fertilizer by effectively controlling NH4+ availability for timely crop use, reducing losses, and preventing soil and water pollution.
Acidic cations such as Al, Fe, and Mn tend to fix P in soils, and this reaction make P unavailable for plant uptake. Several conventional strategies for farmers had been proposed to ameliorate Al toxicity either via liming or continuous P fertilization. However, these approaches are not only expensive but are also environmental unfriendly. Thus, a sorption study was carried out using charcoal and sago bark ash as soil amendments to determine their effects on P sorption characteristics of low pH soils. Phosphorus sorption determination was based on standard procedures and the P adsorption data for the samples tested in this study were fitted to the Langmuir equation. The results suggest that the combined use of charcoal and sago bark ash decreased P adsorption and increased P desorption relative to the untreated soils. Organic matter in the charcoal reduced P sorption by providing more negatively charged surfaces, thus increasing anion repulsion. Apart from increasing the amount of P adsorbed in the soil, the use of the sago bark ash increased the amount of P desorbed because the primary reaction between the sago bark ash and soils is an acid neutralization reaction. These improvements do not only reduce P fixation in acid soils but they also promote the effective utilization of nutrients via the timely release of nutrients for maximum crop production. In conclusion, the incorporation of charcoal and sago bark ash to the soil had a positive effect on replenishing the soil solution’s P. The organic matter of the charcoal reduces P sorption capacity by blocking P binding sites, increasing the negative electric potential in the plane of adsorption, causing steric hindrance on the mineral surfaces and decreasing goethite and hematite-specific surface areas. However, there is a need for the inclusion of more soil chemical, physical, and mineralogical properties in predicting soil P sorption to enhance the reliability of the findings.
Efficient management of N fertilizers enhances crop yields and contributes to sustainable food security. Tropical acidic soils with high Al and Fe are prone to easy loss of basic cations, such as NH4+, via leaching and erosion. Appropriate soil amendments and agronomic practices minimize the loss of fertilizer nutrients, improve soil nutrient retention, and maximize their uptake by plants. This study aimed to evaluate the effects of co-applying charcoal and sago bark ash with inorganic fertilizers on N availability, uptake, use efficiency, and dry matter production of sorghum in a tropical acid soil. The results revealed that the co-application of inorganic fertilizers with charcoal and sago bark ash increased sorghum plant height, dry matter production, N uptake and N use efficiency. The soil treated with a combination of 100% of the recommended rate of charcoal and sago bark ash (C1A1) resulted in significantly higher sorghum dry matter production, N uptake, and use efficiency compared with normal fertilization (U1). The C1A1 treatment resulted in significantly lower soil available N compared with U1. The C1A1 treatment enhanced the uptake of N by the sorghum plants, resulting in less available N in the soil after the experiment. Although the effects of co-applying charcoal and sago bark ash on soil total N were not glaring, this practice increased soil pH and total C, and reduced exchangeable acidity and Al3+. A long-term field study is recommended to confirm the effects of co-applying inorganic fertilizers with charcoal and sago bark ash on sorghum productivity, economic viability, and soil nutrient residual effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.