The most common type of garnet is pyrope-almandine, whose color varies from red to violet. In this study, 36 faceted gem-quality samples are used for electron microprobe, infrared spectrum, and UV-Visible spectrum test to find the coloration mechanism and spectroscopic characters in red-violet pyrope-almandine. The gradually increasing content of Mg2+ at the X position in the lattice is connected to the variation in the infrared spectrum. The wavenumber increases with the decrease of cationic radius, which makes the distance between C and D bands further. The color mechanism is mainly affected by Fe2+, and Mn2+. We discuss the change in colors with the assumption of a certain MnO content. When it is above or below the standard of 1 wt%, the absorption intensity of the UV-Visible spectrum is completely different in the purple zone, which determines the color to be red or violet. Therefore, the effect of Mn2+ and Fe2+ should be combined instead of being considered respectively. The results show that the MnO content can be quickly inferred by the light purple/fancy purple color. To avoid harming the value, this new insight makes it possible to quickly classify the gem quality in mining as well as in the market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.