Horizontal primary roots of Zea mays L. were photographed during the course of their gravireaction and during a preceding growth period in the vertical orientation. The displacement, by root elongation, of marker particles on the root surface was recorded. The particle-displacement rates were used to estimate the distribution of elemental elongation rates along opposite sides of the growing root apex. In the temperature range 21-25°C there was a stimulation of local elongation rates along the upper side of a gravireacting root and a reduction (and sometimes a cessation) of elongation along the lower side. Elemental elongation rates have been related to the development of root curvature, and the magnitude of the differential growth between upper and lower sides required for a particular rate of bending has also been estimated. The results complement, and are compatible with, findings relating to the distribution of certain endogenous growth regulators believed to participate in the gravireaction.
A brief account is given of the discovery of abscisic acid (ABA) in roots and root caps of higher plants as well as the techniques by which ABA may be demonstrated in these tissues . The remainder of the review is concerned with examining the role of ABA in the regulation of root growth . In this regard, it is well established that when ABA is supplied to roots their elongation is usually inhibited, although at low external concentrations a stimulation of growth may also be found . Fewer observations have been directed at exploring the connection between root growth and the level of naturally occurring, endogenous ABA . Nevertheless, the evidence here also suggests that ABA is an inhibitory regulator of root growth . Moreover, ABA appears to be involved in the differential growth that arises in response to a gravitational stimulus . Recent reports that deny a role for ABA in root gravitropism are considered inconclusive. The response of roots to osmotic stress and the changes in ABA levels which ensue, are summarised ; so are the interrelations between ABA and other hormones, particularly auxin (e .g . indoleacetic acid) ; both are considered in the context of the root growth and development . Quantitative changes in auxin and ABA levels may together provide the root with a flexible means of regulating its growth .
Root apical meristems are composed of two zones in which either formative or proliferative cell divisions occur. Within the formative zone, autoreproductive initial cells (a-cells) occupy distinctive locations. By means of graph-L-systems, the behavior of one such type of a-cells has been investigated, with particular reference to root caps within the developing primordia of lateral roots of Lycopersicon esculentum cultivated in vitro. Here, the a-cells constitute the "protoderm initials", cells which are found also in the root cap of many angiosperm species. A set of cuboidal (i.e., six-sided) a-cells develops early in the ontogeny of a lateral-root primordium. Then, according to both anatomical observations and theoretical simulations obtained by the application of graph-L-systems, sequential production of descendents from each a-cell leads to the formation of a new autoreproductive cell (a), a cap columella initial (c), and two mother cells (e and f) whose respective descendents differentiate as root epidermis and cap flank cells. In this graph-L-system, there is specification of the location of sister cells with respect to the three orthogonal directions of a cuboidal. In the early stage of root cap formation, only a few rounds of these formative cell divisions by each a-cell and its four types of descendents are required to provide the basic set of cells necessary for full cap development. After the lateral root emerges from the parent root, there may be a temporary cessation of the formative divisions of the a-cells which give rise to columella initials. Columella production is then supported entirely by its own independent set of autoreproductive c-initials. At the same time, division of the autoreproductive protoderm initial cell is directed towards maintaining the cap flank and the epidermal cell files. The regulation of the types of formative division by the a-cell may be represented by means of a division counter which may be specific for a given species.
A double-wall map L-system, designated as S(5-5), was developed to simulate the cellular pattern found at the summit of shoot apices of Psilotum nudum. Commencing from a 3-sided autoreproductive founder cell, fives steps of simulation established a basic set of ten different cell types. Continuing the simulation beyond the fifth step revealed that, in addition to the regular production of new 3-sided cells, a group of autoreproductive 5-sided cells came into being. A close correspondence exists between the cells of the two-dimensional simulation and the two-dimensional cellular patterns found on the epidermis of the apices of Psilotum species. The 3-sided cells produced during the simulation correspond to the potentially organogenetic 3-sided cells that can be seen upon the apical surfaces. Successive generations of these 3-sided apical cells (which are actually 4-sided tetrahedral cells when viewed in three dimensions) and their immediate descendants are thought to be selected to organise the successive pairs of apices that bring about the repeated bifurcation of the Psilotum shoots. The 5-sided cells contribute to the cellular "pavements" which separate these pairs of organogenetic centres, each with their 3-sided apical cells. The cellular patterns simulated by the S(5-5) system may also correspond to the cellular patterns found on the surfaces of some other pteridophyte apices, including that of the rhizophores of Selaginella species. Tritiated-thymidine labelling of rhizophore apices revealed a group of nonproliferating cells that was associated with rhizophore bifurcation and which may correspond to a group of pavement cells. Nonproliferating cells, by regulating the siting of new organogenetic centres, may have evolved as an accompaniment to branching events such as the bifurcation of root and organ axes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.