Ionic currents activated by extracellular adenosine 5'-triphosphate (ATP) were studied in voltage-clamped dorsal root ganglion neurons from rats and bullfrogs. Under quasiphysiological ionic conditions, ATP-activated current reversed near 0 mV and showed strong inward rectification. Strong inward rectification was maintained even in symmetric solutions of divalent-free Cs glutamate. Examined with a resolution of 10s of microseconds, the rectification was instantaneous. Inward current was greatly reduced when N-methyl-D-glucamine was substituted for external Na. ATP-activated inward currents could be recorded with Ca as the only external cation; estimated from reversal potentials, the ratio of Ca to Na permeability is about 0.3. Unitary channel activity could be recorded when ATP was applied to outside-out patches. When activated, a single channel flickered rapidly, with a mean current of about 0.5 pA at -100 mV. Large concentrations of ATP put the channel in the activated, flickery condition virtually all the time, while at lower concentrations, periods of flickering were interspersed with closures. Analysis of whole-cell current fluctuations showed precisely the characteristics expected if such channels underlie the macroscopic currents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.