Sensitivity analysis (SA) is a significant tool for studying the robustness of results and their sensitivity to uncertainty factors in life cycle assessment (LCA). It highlights the most important set of model parameters to determine whether data quality needs to be improved, and to enhance interpretation of results. Interactions within the LCA calculation model and correlations within Life Cycle Inventory (LCI) input parameters are two main issues among the LCA calculation process. Here we propose a methodology for conducting a proper SA which takes into account the effects of these two issues. This study first presents the SA in an uncorrelated case, comparing local and independent global sensitivity analysis. Independent global sensitivity analysis aims to analyze the variability of results because of the variation of input parameters over the whole domain of uncertainty, together with interactions among input parameters. We then apply a dependent global sensitivity approach that makes minor modifications to traditional Sobol indices to address the correlation issue. Finally, we propose some guidelines for choosing the appropriate SA method depending on the characteristics of the model and the goals of the study. Our results clearly show that the choice of sensitivity methods should be made according to the magnitude of uncertainty and the degree of correlation.
Comparative decision making process is widely used to identify which option (system, product, service, etc.) has smaller environmental footprints and for providing recommendations that help stakeholders take future decisions. However, the uncertainty problem complicates the comparison and the decision making. Probability-based decision support in LCA is a way to help stakeholders in their decision-making process. It calculates the decision confidence probability which expresses the probability of a option to have a smaller environmental impact than the one of another option. Here we apply the reliability theory to approximate the decision confidence probability. We compare the traditional Monte Carlo method with a reliability method called FORM method. The Monte Carlo method needs high computational time to calculate the decision confidence probability. The FORM method enables us to approximate the decision confidence probability with fewer simulations than the Monte Carlo method by approximating the response surface. Moreover, the FORM method calculates the associated importance factors that correspond to a sensitivity analysis in relation to the probability. The importance factors allow stakeholders to determine which factors influence their decision. Our results clearly show that the reliability method provides additional useful information to stakeholders as well as it reduces the computational time.
An innovative methodology for a first-stage implementation of LCA in EIA is proposed. Its applicability is demonstrated on two wastewater treatment plant case studies. The conclusions for the four EIA steps investigated differ with or without LCA. LCA provides valuable additional information on 1) global and 2) off-site impacts. LCA identifies pollution transfers towards a life cycle perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.