Protein-truncating variants (PTVs) affecting dyslipidemia risk may point to therapeutic targets for cardiometabolic disease. Our objective was to identify PTVs that were associated with both lipid levels and the risk of coronary artery disease (CAD) or type 2 diabetes (T2D) and assess their possible associations with risks of other diseases. To achieve this aim, we leveraged the enrichment of PTVs in the Finnish population and tested the association of low-frequency PTVs in 1,209 genes with serum lipid levels in the Finrisk Study (n = 23,435). We then tested which of the lipid-associated PTVs were also associated with the risks of T2D or CAD, as well as 2,683 disease endpoints curated in the FinnGen Study (n = 218,792). Two PTVs were associated with both lipid levels and the risk of CAD or T2D: triglyceride-lowering variants in ANGPTL8 (-24.0[-30.4 to -16.9] mg/dL per rs760351239-T allele, P = 3.4 × 10−9) and ANGPTL4 (-14.4[-18.6 to -9.8] mg/dL per rs746226153-G allele, P = 4.3 × 10−9). The risk of T2D was lower in carriers of the ANGPTL4 PTV (OR = 0.70[0.60–0.81], P = 2.2 × 10−6) than noncarriers. The odds of CAD were 47% lower in carriers of a PTV in ANGPTL8 (OR = 0.53[0.37–0.76], P = 4.5 × 10−4) than noncarriers. Finally, the phenome-wide scan of the ANGPTL8 PTV showed that the ANGPTL8 PTV carriers were less likely to use statin therapy (68,782 cases, OR = 0.52[0.40–0.68], P = 1.7 × 10−6) compared to noncarriers. Our findings provide genetic evidence of potential long-term efficacy and safety of therapeutic targeting of dyslipidemias.
Studies of structural plasticity in the brain often require the detection and analysis of axonal synapses (boutons). To date, bouton detection has been largely manual or semi-automated, relying on a step that traces the axons before detection the boutons. If tracing the axon fails, the accuracy of bouton detection is compromised. In this paper, we propose a new algorithm that does not require tracing the axon to detect axonal boutons in 3D two-photon images taken from the mouse cortex. To find the most appropriate techniques for this task, we compared several well-known algorithms for interest point detection and feature descriptor generation. The final algorithm proposed has the following main steps: (1) a Laplacian of Gaussian (LoG) based feature enhancement module to accentuate the appearance of boutons; (2) a Speeded Up Robust Features (SURF) interest point detector to find candidate locations for feature extraction; (3) non-maximum suppression to eliminate candidates that were detected more than once in the same local region; (4) generation of feature descriptors based on Gabor filters; (5) a Support Vector Machine (SVM) classifier, trained on features from labelled data, and was used to distinguish between bouton and non-bouton candidates. We found that our method achieved a Recall of 95%, Precision of 76%, and F1 score of 84% within a new dataset that we make available for accessing bouton detection. On average, Recall and F1 score were significantly better than the current state-of-the-art method, while Precision was not significantly different. In conclusion, in this article we demonstrate that our approach, which is independent of axon tracing, can detect boutons to a high level of accuracy, and improves on the detection performance of existing approaches. The data and code (with an easy to use GUI) used in this article are available from open source repositories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.