Electrolyte-supported symmetric Ni-YSZ cermet electrodes of ca. 23 µm were prepared by screenprinting and the impedance was measured as a function of humidity from 2% to 90% balanced in H 2 at a total flow rate of 50 sccm. The Ni felt current collector of 1 mm thickness exhibited a Gerischer-like gas concentration impedance in the low frequency range, which was similarly observed in the cermet-supported solid oxide cells, while the Pt paste collector exhibited only electrochemical polarization. The electrochemical polarization of both samples was modeled by a non-ideal diffusion-reaction transmission line model including CPEs with α = 0.5. In the case of the Pt paste collector, all the Bisquert parameters exhibited humidity dependence to the -1/2 power, supporting a non-faradaic chemical reaction mechanism at three phase boundaries. Consequently, the surface diffusivity and reaction rate increased linearly with humidity. Less pronounced humidity dependence and somewhat lower utilization length with an Ni felt collector can be attributed to the diffusion-limited gas flow through the collector.
The unique mixed conduction aspect has much to be explored for ceramic fuel/steam electrodes suggested for higher chemical stability than cermets in SOFC/SOEC applications. Typical symmetric cell configuration of the thin ceramic electrodes on the electrolytes was shown to be a versatile configuration of the electron‐blocking Hebb–Wagner polarization cell for the characterization of the mass and charge transport in mixed conducting oxides by impedance spectroscopy. The Jamnik–Maier transmission line model for the mixed conductors was generalized by replacing the capacitors with constant‐phase elements to describe the extremely non‐ideal impedance behavior of porous but negligibly catalytic La2Ti2O7 layers at various humidity levels up to 90% in hydrogen at 850 °C. Modeling allowed the deconvolution of the parameter set for the evaluation of chemical diffusivity and non‐stoichiometry as well as partial ionic and electronic conductivity of La2Ti2O7. Electrostatic double layer capacitance was found to be orders of magnitude higher than the theoretical despite the correct oxygen activity dependence, which appears generic and thus requires a theoretical clarification. Overlapping interfacial and chemical capacitance as well as the strongly non‐ideal behavior of the latter are mainly responsible for the less clearly distinguished diffusion‐limited feature of the Hebb–Wagner polarization cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.