In the fields of plant layout optimization, the main goal is to minimize the construction cost including pipelines as satisfying all constraints such as safety and operating issues. However, what is the lacking of considerations in previous researches is to consider proper safety and maintenance spaces for a complex plant. Based on the mathematical programming, MILP(Mixed Integer Linear Programming) problems including various constraints can be formulated to find the optimal solution which is to achieve the best economic benefits. The objective function of this problem is the sum of piping cost, pumping cost and area cost. In general, many conventional optimization solvers are used to find a MILP problem. However, it is really hard to solve this problem due to complex inequality and equality constraints, since it is impossible to use the derivatives of objective functions and constraints. To resolve this problem, the PSO (Particle Swarm Optimization), which is one of the representative sampling approaches and does not need to use derivatives of equations, is employed to find the optimal solution considering various complex constraints in this study. The EO (Ethylene Oxide) plant is tested to verify the efficacy of the proposed method.
− In the fields of researches associated with plant layout optimization, the main goal is to minimize the costs of pipelines for connecting equipment. However, what is the lacking of considerations in previous researches is to handle the multi floor processes considering the safety distances for domino impacts on a complex plant. The mathematical programming formulation can be transformed into MILP (Mixed Integer Linear Programming) problems as considering safety distances, maintenance spaces, and economic benefits for solving the multi-floor plant layout problem. The objective function of this problem is to minimize piping costs connecting facilities in the process. However, it is really hard to solve this problem due to complex unequality or equality constraints such as sufficient spaces for the maintenance and passages, meaning that there are many conditional statements in the objective function. Thus, it is impossible to solve this problem with conventional optimization solvers using the derivatives of objective function. In this study, the PSO (Particle Swarm Optimization) technique, which is one of the representative sampling approaches, is employed to find the optimal solution considering various constraints. The EO (Ethylene Oxide) plant is illustrated to verify the efficacy of the proposed method.Key words: Plant Layout Optimization, Particle Swarm Optimization, MILP, Ethylene Oxide Plant † To whom correspondence should be addressed. E-mail: changjunlee@pknu.ac.kr ‡ 이 논문은 서울대학교 윤인섭 교수님의 정년을 기념하여 투고되었습니다. This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.