In this paper, we introduce the concept of ordinary smooth topology on a set X by considering the gradation of openness of ordinary subsets of X. And we obtain the result [Corollary 2.13] : An ordinary smooth topology is fully determined its decomposition in classical topologies. Also we introduce the notion of ordinary smooth [resp. strong and weak] continuity and study some its properties. Also we introduce the concepts of a base and a subbase in an ordinary smooth topological space and study their properties. Finally, we investigate some properties of an ordinary smooth subspace.Key words : ordinary smooth (co)topological space, r-level and strong r-level, ordinary smooth [resp. weak and strong] continuity, ordinary smooth open [resp. closed] mapping, ordinary smooth subspace, ordinary smooth base [resp. subbase].
We study some properties of interval-valued fuzzy normal subgroups of a group. In particular, we obtain two characterizations of interval-valued fuzzy normal subgroups. Moreover, we introduce the concept of an interval-valued fuzzy coset and obtain several results which are analogous of some basic theorems of group theory.
We study the conditions under which a given intervalvalued fuzzy subgroup of a given group can or can not be realized as a union of two interval-valued fuzzy proper subgroups. Moreover, we provide a simple necessary and sufficient condition for the union of an arbitrary family of interval-valued fuzzy subgroups to be an interval-valued fuzzy subgroup. Also we formulate the concept of interval-valued fuzzy subgroup generated by a given interval-valued fuzzy set by level subgroups. Furthermore we give characterizations of interval-valued fuzzy conjugate subgroups and interval-valued fuzzy characteristic subgroups by their level subgroups. Also we investigate the level subgroups of the homomorphic image of a given interval-valued fuzzy subgroup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.