Mercury exchange fluxes between atmosphere and soil surface were measured in two different types of soils; lawn soil (LS) and forest soil (FS). Average Hg emission from LS was higher than from FS although the soil Hg content was more than 2 times higher in forest soil. In LS, Hg emissions were much greater in warm season than in cold season; however, deposition was dominant in FS during warm season because of leafy trees blocking the solar radiation reaching on the soil surface. In both LS and FS, Hg fluxes showed significantly positive correlations with UV radiation and soil surface temperature during cold season. In addition, it was observed that emission showed positive correlation with UV radiation and soil temperature while there was negative relationship between deposition and UV radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.