At micro-to nano-scales, classical size effects in heat conduction play an important role in suppressing the thermal transport process. Such effects occur when the characteristic lengths become commensurate to the mean free paths (MFPs) of heat carriers that are mainly phonons for nonmetallic crystals. Beyond existing experimental efforts on thin films using laser-induced thermal gratings, this work provides the complete theoretical analysis for a new approach to extract the effective phonon MFP distribution for the in-plane heat conduction within a thin film or flakelike sample. In this approach, nanoslots are patterned on a suspended thin film. Phonons will transport ballistically through the neck region between adjacent nanoslots if the phonon MFPs are much longer than the neck width. The associated "ballistic thermal resistance" for varied neck dimensions can then be used to reconstruct the phonon MFP distribution within the film. The technique can be further extended to two-dimensional materials when the relaxation time approximation is reasonably accurate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.