Tumor oxygenation after a photodynamic therapy (PDT) treatment is a critical factor for understanding the posttreatment metabolic pathway of the tumor. It also provides important information for designing combination therapy of PDT and other oxygen-dependent anticancer modalities. In this study, mammary carcinoma in flank and hind leg of C3H mice were subjected to PDT at either subcurative or curative level (12.5 mg/kg Photofrin; 200 or 600 J/cm2, respectively). The before and post-PDT tumor oxygenation was measured with an oxygen-sensitive microelectrode. The data revealed that tumor oxygenation at the time of PDT has a profound effect on posttreatment tumor oxygenation, which may largely be due to an interplay between direct PDT cytotoxicity and PDT damage to the tumor microvasculature. Transient reoxygenation occurred after PDT, which may provide a window for improved combination therapy for other oxygen-dependent modalities.
Normal brain tissue response to photodynamic therapy (PDT) must be quantified in order to implement PDT as a treatment of brain neoplasm. We therefore calculated the threshold for PDT-induced tissue necrosis in normal brain using Photofrin (porfimer sodium, Quadralogic Technologies Inc., Vancouver, BC) as the photosensitizer. The absolute light fluence-rate distribution for superficial irradiation and effective attenuation depth were measured in vivo using an invasive optical probe. Photosensitizer uptake in cerebral cortex was measured with chemical extraction and fluorometric analysis. Photodynamic therapy-induced lesion depths at various drug dose levels were measured as a biological end point. The PDT threshold for normal brain necrosis was calculated as in the magnitude of 10(16) photons/cm3. Thus normal rat brain is extremely vulnerable to PDT damage. This suggests that extra precautions must be exercised when PDT is used in brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.