Hexokinase and D-glucose-6-phosphate dehydrogenase (G6PDH) from Schizosaccharomyces pmbe have been purified 250-fold by an identical three-step. Both enzymes are dimeric with a molecular mass of 88 kDa for the kinase and 112 kDa for the dehydrogenase. Steady-state kinetic studies were performed on hexokinase and G6PDH, which form the glucose phosphate branch of the oxidative pentose phosphate pathway of S. pombe (fission yeast). Hexokinase promotes Mg(2+)-activated phosphorylation of D-glucose by the equilibrium random Bi Bi mechanism with formation of the abortive enzyme-ADP-glucose complex. ADP inhibits the kinase competitively versus ATP and noncompetitively versus D-glucose. The Mg2+ activation of hexokinase is associated with an increase in the maximal velocity by its interaction with the ternary complex to facilitate the transfer of the phosphoryl group. G6PDH catalyzes NADP(+)-linked oxidation of D-glucose-6-phosphate by the ordered Bi Bi mechanism with NADP+ as the leading reactant. High NADP+ concentration inhibits the dehydrogenase by forming the dead-end ternary complex. In addition, G6PDH is also subjected to product inhibition by NADPH and noncompetitive inhibition by A(G)TP. Thus, the oxidative pentose phosphate pathway in S. pombe may be regulated via inhibition of hexokinase by ADP in conjunction with inhibition of G6PDH by NADPH and ATP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.