3q29 duplication syndrome (3q29dup) is a rare genomic disorder caused by a 1.6 Mb duplication (GRCh38 chr3:195,998,623,000). Case reports indicate the 3q29dup is likely to be pathogenic, but the full range of manifestations is not well understood. We used the 3q29 registry (https://3q29.com) to ascertain 31 individuals with 3q29dup, the largest cohort ever surveyed in a systematic way. For comparison, we ascertained 117 individuals with the reciprocal 3q29 deletion and 64 typically developing controls. We used a custom medical and demographic questionnaire to assess physical and developmental phenotypes, and two standardized instruments, the Social Responsiveness Scale and Child Behavior Checklist/Adult Behavior Checklist, to assess social disability. Participants with 3q29dup report a high rate of problems in the first year of life (80.6%), including feeding problems (55%), failure to gain weight (42%), hypotonia (39%), and respiratory distress (29%). In early childhood, learning problems (71.0%) and seizures (25.8%) are common. Additionally, the rate of self-reported autism spectrum disorder diagnoses (39%) is substantially elevated compared to the general population, suggesting that the 3q29 duplication may be an autism susceptibility locus. This is the most comprehensive description of 3q29dup to date. Our findings can be used to develop evidence-based strategies for early intervention and management of 3q29dup. K E Y W O R D S3q29 duplication, autism, epilepsy, genomic disorder, intellectual disability
The 3q29 deletion (3q29Del) confers high risk for schizophrenia and other neurodevelopmental and psychiatric disorders. However, no single gene in this interval is definitively associated with disease, prompting the hypothesis that neuropsychiatric sequelae emerge upon loss of multiple functionally-connected genes. 3q29 genes are unevenly annotated and the impact of 3q29Del on the human neural transcriptome is unknown. To systematically formulate unbiased hypotheses about molecular mechanisms linking 3q29Del to neuropsychiatric illness, we conducted a systems-level network analysis of the non-pathological adult human cortical transcriptome and generated evidence-based predictions that relate 3q29 genes to novel functions and disease associations. The 21 protein-coding genes located in the interval segregated into seven clusters of highly co-expressed genes, demonstrating both convergent and distributed effects of 3q29Del across the interrogated transcriptomic landscape. Pathway analysis of these clusters indicated involvement in nervous-system functions, including synaptic signaling and organization, as well as core cellular functions, including transcriptional regulation, posttranslational modifications, chromatin remodeling, and mitochondrial metabolism. Top network-neighbors of 3q29 genes showed significant overlap with known schizophrenia, autism, and intellectual disability-risk genes, suggesting that 3q29Del biology is relevant to idiopathic disease. Leveraging “guilt by association”, we propose nine 3q29 genes, including one hub gene, as prioritized drivers of neuropsychiatric risk. These results provide testable hypotheses for experimental analysis on causal drivers and mechanisms of the largest known genetic risk factor for schizophrenia and highlight the study of normal function in non-pathological postmortem tissue to further our understanding of psychiatric genetics, especially for rare syndromes like 3q29Del, where access to neural tissue from carriers is unavailable or limited.
3q29 deletion syndrome (3q29del) is a recurrent deletion syndrome associated with neuropsychiatric disorders and congenital anomalies. Dysmorphic facial features have been described but not systematically characterized. This study aims to detail the 3q29del craniofacial phenotype and use a machine learning approach to categorize individuals with 3q29del through analysis of 2D photos. Detailed dysmorphology exam and 2D facial photos were ascertained from 31 individuals with 3q29del. Photos were used to train the next‐generation phenotyping algorithm DeepGestalt (Face2Gene by FDNA, Inc, Boston, MA) to distinguish 3q29del cases from controls and all other recognized syndromes. Area under the curve of receiver operating characteristic curves (AUC‐ROC) was used to determine the capacity of Face2Gene to identify 3q29del cases against controls. In this cohort, the most common observed craniofacial features were prominent forehead (48.4%), prominent nose tip (35.5%), and thin upper lip vermillion (25.8%). The FDNA technology showed an ability to distinguish cases from controls with an AUC‐ROC value of 0.873 (p = 0.006) and led to the inclusion of 3q29del as one of the supported syndromes. This study found a recognizable facial pattern in 3q29del, as observed by trained clinical geneticists and next‐generation phenotyping technology. These results expand the potential application of automated technology such as FDNA in identifying rare genetic syndromes, even when facial dysmorphology is subtle.
doi: medRxiv preprint NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Objective: The goal of this study was to evaluate symptoms of pediatric feeding disorder in a sample of individuals with 3q29 deletion syndrome (3q29Del). Previous research has found that individuals with 3q29Del may experience elevated feeding concerns in early childhood; however, the specificity of these feeding concerns is not well understood. Methods: We compared individuals with 3q29Del (N 5 83) with controls (N 5 59) using an 11-item survey that assessed commonly reported symptoms associated with pediatric feeding disorders. An exploratory analysis also examined individuals with 3q29Del with and without a comorbid global developmental delay (GDD) or an autism spectrum disorder diagnosis. Results: Caregivers of 3q29Del cases reported higher incidences of feeding concerns on 10 of the 11 items included in the survey. This included statistically significant differences in food refusal behaviors, rejection of 1 or more food groups, and a history of failure to thrive. Parents of children with comorbid GDD were more likely to report concerns regarding food selectivity and problem behaviors during mealtime. Conclusion:The results suggest individuals with 3q29Del experience increased symptoms of pediatric feeding disorder that may require targeted evaluation and intervention for optimal outcomes. Future research should include a more thorough multidisciplinary evaluation to further elucidate symptom severity and optimal treatment strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.