Soil arsenic (As) levels are particularly high in parts of China, where wheat and rape are widely grown. Understanding the effects of As concentration on the growth of these two major crops is of significance for food production and security in China. A pot experiment was carried out to study the uptake of As and phosphorus (P), and the soil As bioavailability at different growth stages of wheat and rape. The results indicated that winter wheat was much more sensitive to As stress than rape. Wheat yields were elevated at low rates of As addition (< 60 mg/kg) but reduced at high rates of As concentrations (80-100 mg/kg); while the growth of rape hadn't showed significant responses to As addition. Phosphorus concentrations in wheat at jointing and ear sprouting stages increased with increasing soil As concentrations, and these increases were assumed to contribute a lot to enhanced growth of wheat at low As treatments. Arsenic did not significantly affect P concentrations in rape either. The highest As concentrations in wheat shoot and rape leaf were 8.31 and 3.63 mg/kg, respectively. Arsenic concentrations in wheat and rape grains did not exceed the maximum permissible limit for food stuffs of 1.0 mg/kg. When soil As concentration was less than 60 mg/kg, both wheat and rape could grow satisfactorily without adverse effects; when soil As concentration was 80-100 mg/kg, rape was more suitable to be planted than wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.