Abstract. We present an improved tropospheric nitrogen dioxide column retrieval algorithm (DOMINO v2.0) for OMI based on better air mass factors (AMFs) and a correction for across-track stripes resulting from calibration errors in the OMI backscattered reflectances. Since October 2004, NO 2 retrievals from the Ozone Monitoring Instrument (OMI), a UV/Vis nadir spectrometer onboard NASA's EOSAura satellite, have been used with success in several scientific studies focusing on air quality monitoring, detection of trends, and NO x emission estimates. Dedicated evaluations of previous DOMINO tropospheric NO 2 retrievals indicated their good quality, but also suggested that the tropospheric columns were susceptible to high biases (by 0-40 %), probably because of errors in the air mass factor calculations. Here we update the DOMINO air mass factor approach. We calculate a new look-up table (LUT) for altitude-dependent AMFs based on more realistic atmospheric profile parameters, and include more surface albedo and surface pressure reference points than before. We improve the sampling of the TM4 model, resulting in a priori NO 2 profiles that are better mixed throughout the boundary layer. We evaluate the NO 2 profiles simulated with the improved TM4 sampling as used in the AMF calculations and show that they are highly consistent with in situ NO 2 measurements from aircraft during the INTEX-A and INTEX-B campaigns in 2004 and 2006. Our air mass factor calculations are furCorrespondence to: Folkert Boersma (boersma@knmi.nl) ther updated by the implementation of a high-resolution terrain height and a high-resolution surface albedo climatology based on OMI measurements. Together with a correction for across-track stripes, the overall impact of the improved terrain height and albedo descriptions is modest (<5 %) on average over large polluted areas, but still causes significant changes locally. The main changes in the DOMINO v2.0 algorithm follow from the new LUT and the improved TM4 sampling that results in more NO 2 simulated aloft, where sensitivity to NO 2 is higher, and amount to reductions in tropospheric NO 2 columns of up to 20 % in winter, and 10 % in summer over extended polluted areas. We investigate the impact of aerosols on the NO 2 retrieval, and based on a comparison of concurrent retrievals of clouds from OMI and aerosols from MODIS Aqua, we find empirical evidence that OMI cloud retrievals are sensitive to the presence of scattering aerosols. It follows that an implicit correction for the effects of aerosols occurs through the aerosol-induced cloud parameters in DOMINO, and we show that such an empirical correction amounts to a 20 % AMF reduction in summer and ±10 % changes in winter over the eastern United States.
Global maps of the Earth's surface Lambertian equivalent reflectance (LER) are constructed using 3 years of Ozone Monitoring Instrument (OMI) measurements obtained between October 2004 and October 2007 at 23 wavelengths between 328 and 500 nm. The maps are constructed on a 0.5° by 0.5° longitude‐latitude grid for each calendar month using an algorithm based on temporal histograms of the observed LER values per geophysical location. The algorithm allows seasonal effects related to vegetation, snow, and ice but excludes statistical outliers. The maps show typical features like open ocean regions with high reflectivity indicative of low phytoplankton levels, coastal waters with high reflectance caused by silt, and oceanic regions with low reflectance correlated with chlorophyll. Open oceans in general have a higher reflectivity than does land up to 420 nm. The highest reflectivity values of oceans occur at 380 nm. Good agreement is found with a similar LER map based on data from the Total Ozone Mapping Spectrometer (TOMS) at 331, 340, 360, and 380 nm, which is 0.015 lower on average. The comparison with data from the Global Ozone Monitoring Experiment (GOME) at 335, 380, 440, and 494 nm is also satisfactory, being 0.005 lower on average. The LER derived from OMI data is approximately 0.02 higher than the black sky albedo as derived from the Moderate Resolution Imaging Spectroradiometer at 470 nm, which is partly related to viewing geometry effects of the bidirectional reflectance distribution function of the surface. The data set presented contains residual cloud features over tropical rain forest regions, has a higher spatial resolution than those created using TOMS and GOME data, and includes more wavelengths.
Abstract. This overview paper highlights the successes of the Ozone Monitoring Instrument (OMI) on board the Aura satellite spanning a period of nearly 14 years. Data from OMI has been used in a wide range of applications and research resulting in many new findings. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. With the operational very fast delivery (VFD; direct readout) and near real-time (NRT) availability of the data, OMI also plays an important role in the development of operational services in the atmospheric chemistry domain.
Abstract. The Dutch-Finnish Ozone Monitoring Instrument (OMI) is an imaging spectrograph flying on NASA's EOS Aura satellite since 15 July 2004. OMI is primarily used to map trace-gas concentrations in the Earth's atmosphere, obtaining mid-resolution (0.4-0.6 nm) ultraviolet-visible (UV-VIS; 264-504 nm) spectra at multiple (30-60) simultaneous fields of view. Assessed via various approaches that include monitoring of radiances from selected ocean, land ice and cloud areas, as well as measurements of line profiles in the solar spectra, the instrument shows low optical degradation and high wavelength stability over the mission lifetime. In the regions relatively free from the slowly unraveling "row anomaly" (RA) the OMI irradiances have degraded by 3-8 %, while radiances have changed by 1-2 %. The long-term wavelength calibration of the instrument remains stable to 0.005-0.020 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.