ABSTRACT.Retrotransposon-based molecular markers are powerful molecular tools. However, these markers are not readily available due to the difficulty in obtaining species-specific retrotransposon primers. Although recent techniques enabling the rapid isolation of retrotransposon sequences have facilitated primer development, this process nonetheless remains time-consuming and costly. Therefore, research into the transferability of retrotransposon primers developed from one plant species onto others would be of great value. The present study investigated the transferability of retrotransposon primers derived from 'Luotian-tianshi' persimmon (Diospyros kaki Thunb.) across other fruit crops, as well as within the genus using inter-retrotransposon amplified polymorphism molecular marker. Fourteen of the 26 retrotransposon primers tested (53.85%) produced robust and reproducible amplification products across all fruit crops tested, indicating their applicability across plant species. Four of the 13 fruit crops showed the best transferability performances: persimmon, grape, citrus, and peach. Furthermore, similarity coefficients and UPGMA clustering indicated that these primers could further offer a potential tool for germplasm differentiation, parentage identification, genetic diversity assessment, classification, and phylogenetic studies across a variety of plant species. Transferability was further confirmed by examining published primers derived from Rosaceae, Gramineae, and Solanaceae. This study is one of the few currently available studies concerning the transferability of retrotransposon primers across plant species in general, and is the first successful study of the transferability of retrotransposon primers derived from persimmon. The primers presented here will help reduce costs for future retrotransposon primer development and therefore contribute to the popularization of retrotransposon molecular markers.
ABSTRACT. Oriental persimmon (Diospyros kaki Thunb.) (2n = 6x = 90) is a major commercial and deciduous fruit tree that is believed to have originated in China. However, rare transcriptomic and genomic information on persimmon is available. Using Roche 454 sequencing technology, the transcriptome from RNA of the flowers of D. kaki was analyzed. A total of 1,250,893 reads were generated and 83,898 unigenes were assembled. A total of 42,711 SSR loci were identified from 23,494 unigenes and 289 polymerase chain reaction primer pairs were designed. Of these 289 primers, 155 (53.6%) showed robust PCR amplification and 98 revealed polymorphism between 15 persimmon genotypes, indicating a polymorphic rate of 63.23% of the productive primers for characterization and genotyping of the genus Diospyros. Transcriptome sequence data generated from next-generation sequencing technology to identify microsatellite loci appears to be rapid and cost-efficient, particularly for species with no genomic sequence information available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.