Physiological signals such as the electrocardiogram (ECG) and arterial blood pressure (ABP) in the intensive care unit (ICU) are often severely corrupted by noise, artifact and missing data, which lead to large errors in the estimation of the heart rate (HR) and ABP. A robust HR estimation method is described that compensates for these problems. The method is based upon the concept of fusing multiple signal quality indices (SQIs) and HR estimates derived from multiple electrocardiogram (ECG) leads and an invasive ABP waveform recorded from ICU patients. Physiological SQIs were obtained by analyzing the statistical characteristics of each waveform and their relationships to each other. HR estimates from the ECG and ABP are tracked with separate Kalman filters, using a modified update sequence based upon the individual SQIs. Data fusion of each HR estimate was then performed by weighting each estimate by the Kalman filters' SQI-modified innovations. This method was evaluated on over 6000 h of simultaneously acquired ECG and ABP from a 437 patient subset of ICU data by adding real ECG and realistic artificial ABP noise. The method provides an accurate HR estimate even in the presence of high levels of persistent noise and artifact, and during episodes of extreme bradycardia and tachycardia.
A completely automated algorithm to detect poor-quality electrocardiograms (ECGs) is described. The algorithm is based on both novel and previously published signal quality metrics, originally designed for intensive care monitoring. The algorithms have been adapted for use on short (5-10 s) single- and multi-lead ECGs. The metrics quantify spectral energy distribution, higher order moments and inter-channel and inter-algorithm agreement. Seven metrics were calculated for each channel (84 features in all) and presented to either a multi-layer perceptron artificial neural network or a support vector machine (SVM) for training on a multiple-annotator labelled and adjudicated training dataset. A single-lead version of the algorithm was also developed in a similar manner. Data were drawn from the PhysioNet Challenge 2011 dataset where binary labels were available, on 1500 12-lead ECGs indicating whether the entire recording was acceptable or unacceptable for clinical interpretation. We re-annotated all the leads in both the training set (1000 labelled ECGs) and test dataset (500 12-lead ECGs where labels were not publicly available) using two independent annotators, and a third for adjudication of differences. We found that low-quality data accounted for only 16% of the ECG leads. To balance the classes (between high and low quality), we created extra noisy data samples by adding noise from PhysioNet's noise stress test database to some of the clean 12-lead ECGs. No data were shared between training and test sets. A classification accuracy of 98% on the training data and 97% on the test data were achieved. Upon inspection, incorrectly classified data were found to be borderline cases which could be classified either way. If these cases were more consistently labelled, we expect our approach to achieve an accuracy closer to 100%.
In this work, we describe a beat-by-beat method for assessing the clinical utility of pulsatile waveforms, primarily recorded from cardiovascular blood volume or pressure changes, concentrating on the photoplethysmogram (PPG). Physiological blood flow is nonstationary, with pulses changing in height, width and morphology due to changes in heart rate, cardiac output, sensor type and hardware or software pre-processing requirements. Moreover, considerable inter-individual and sensor-location variability exists. Simple template matching methods are therefore inappropriate, and a patient-specific adaptive initialization is therefore required. We introduce dynamic time warping to stretch each beat to match a running template and combine it with several other features related to signal quality, including correlation and the percentage of the beat that appeared to be clipped. The features were then presented to a multi-layer perceptron neural network to learn the relationships between the parameters in the presence of good- and bad-quality pulses. An expert-labeled database of 1055 segments of PPG, each 6 s long, recorded from 104 separate critical care admissions during both normal and verified arrhythmic events, was used to train and test our algorithms. An accuracy of 97.5% on the training set and 95.2% on test set was found. The algorithm could be deployed as a stand-alone signal quality assessment algorithm for vetting the clinical utility of PPG traces or any similar quasi-periodic signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.