The flow-field beneath a jet-borne vertical landing aircraft is highly complex and unsteady. large-eddy simulation is a suitable tool to predict both the mean flow and unsteady fluctuations. This work aims to evaluate the suitability of LES by applying it to two multiple jet impingement problems: the first is a simple twin impinging jet in cross-flow, while the second includes a circular intake. The numerical method uses a compressible solver on a mixed element unstructured mesh. The smoothing terms in the spatial flux are kept small by the use of a monitor function sensitive to vorticity and divergence. The WALE subgrid scale model is utilised. The simpler jet impingement case shows good agreement with experiment for mean velocity and normal stresses. Analysis of time histories in the jet shear layer and near impingement gives a dominant frequency at a Strouhal number of 0·1, somewhat lower than normally observed in free jets. The jet impingement case with an intake also gives good agreement with experimental velocity measurements, although the expansion of the grid ahead of the jets does reduce the accuracy in this region. Turbulent eddies are observed entering the intake with significant swirl. This is in qualitative agreement with experimental visualisation. The results show that LES could be a suitable tool when applied to multiple jet impingement with realistic aircraft geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.