Large eddy simulation is applied to solve the unsteady three-dimensional viscous flow in the whole impeller-volute configuration of a centrifugal fan. The results of the simulation are used to predict the impeller-volute interaction and to obtain the unsteady pressure, velocity, and vorticity fluctuations in the impeller and volute casing. The simulation at the design point is carried out with the wall-adapting local eddy-viscosity subgrid-scale model and a sliding mesh technique is applied to consider the impeller-volute interaction. The results show that a strongly unsteady flow field occurs in the impeller and volute casing of the fan, and the flow is characterized with obvious pressure and vorticity fluctuations, especially at the tongue and at the blade wake region. The large pressure fluctuation at the tongue and the large fluctuation of the blade wake vorticity appear as the blade wake is passing the tongue. Acoustic analogy and vortex sound theory are used to compute the radiated dipole and quadrupole sound fields, which are in good agreement with the experiment. The sound results show that the vortex sound theory is convenient for the broadband noise computation, and the dipole sound is much higher than the quadrupole sound. The dipoles, distributed over the volute tongue surface, are the dominant sound source of the fan.
A numerical study on the aerodynamic noise generation of an industrial centrifugal fan with forward swept blades is carried out. Three-dimensional numerical simulations of the complete unsteady flowfield in the whole impeller — volute configuration are performed to obtain the aerodynamic sound sources. Then, aerodynamic sound is calculated using the Lowson equation and compared with the measurements. Moreover, the fan is modified for noise reduction by increasing the distance between the impeller tip and the volute tongue and sloping the volute tongue. The sound levels of the modified fan are lower than those of the original one over almost the entire range of frequencies analysed. The blade passing frequency level of the modified fan is decreased by about 15 dB at the design point. The method described and applied in this work provides a good qualitative prediction of the noise generation when designing a new fan, thus facilitating the choice of the lowest noise fan from several feasible alternatives.
Among all the elements of a centrifugal fan, the volute is the one that has the lowest flow efficiency. Therefore, improving the performance of the volute is an efficient way to improve the total performance of a centrifugal fan. To contribute a better understanding of the flow structure in the fan volute, the three-dimensional flow in a centrifugal fan volute with a large volute width and rectangular cross-section has been measured in detail by means of five-hole probe at three different flowrates. The time-average swirling and throughflow velocity, static and total pressure distributions on eight cross-sections in the throughflow direction of the volute are presented. The results show the formation and development of the flow in the fan volute of this type, indicate the variation of flow parameters, and discover some peculiar flow phenomena different from the traditional understanding. On the basis of the experimental results, the main hydraulic losses in this kind of fan volute have been preliminarily classified and analysed. The results show that the traditional one-dimensional design method of the volute should be further improved as it is only based on the law of momentum moment conservation and the ideal assumption that the distribution of flow parameters are uniform at the volute inlet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.