Two experiments were conducted to study the effect of supplemental 100 g/day of live Bacillus cultures (2 x 10(11) cell of Bacillus subtilis and Bacillus licheniformis) on rumen fermentation as well as milk yield and composition in Chinese Holstein cows. In experiment 1, investigating 3 x 10 cows, milk yield and milk protein were increased by using B. licheniformis (p < 0.05) in comparison with an unsupplemented group and the B. subtilis group. Body weight was not significantly affected by Bacillus culture supplementation (p > 0.05). Percentage of milk fat and lactose was not significantly different between treatments (p > 0.05). But milk protein increased with B. licheniformis supplementation (p < 0.05). In experiment 2, carried out with three non-lactating ruminally and duodenally fistulated cows, results showed that B. licheniformis supplementation increased microbial crude protein flow into duodenum (p < 0.05) and decreased the ammonia nitrogen concentration in ruminal fluid at 0.5 h, 1 h, 3 h, 6 h after morning feeding (p < 0.05). Bacillus licheniformis supplementation increased total VFA and acetate concentration in ruminal fluid at 0.5 h, 1 h, 3 h, 6 h after morning feeding (p < 0.05). Bacillus subtilis had no significant effect on rumen fermentation characteristics, duodenal microbial N flow and ruminal apparent nutrient digestibility (p > 0.05). Bacillus licheniformis increased ruminal apparent nutrient digestibility of neutral detergent fibre, acid detergent fibre, and organic matter (p < 0.05).
Antimicrobial peptides represent ancient host defense effector molecules present in organisms across the evolutionary spectrum. Lots of antimicrobial peptides were synthesized based on well-known structural motif widely existed in a variety of lives. Leucine-rich repeats (LRRs) are sequence motifs present in over 60,000 proteins identified from viruses, bacteria, and eukaryotes. To elucidate if LRR motif possesses antimicrobial potency, two peptides containing one or two LRRs were designed. The biological activity and membrane-peptide interactions of the peptides were analyzed. The results showed that the tandem of two LRRs exhibited similar antibacterial activity and significantly weaker hemolytic activity against hRBCs than the well-known membrane active peptide melittin. The peptide with one LRR was defective at antimicrobial and hemolytic activity. The peptide containing two LRRs formed α-helical structure, respectively, in the presence of membrane-mimicking environment. LRR-2 retained strong resistance to cations, heat, and some proteolytic enzymes. The blue shifts of the peptides in two lipid systems correlated positively with their biological activities. Other membrane-peptide experiments further provide the evidence that the peptide with two LRRs kills bacteria via membrane-involving mechanism. The present study increases our new understanding of well-known LRR motif in antimicrobial potency and presents a potential strategy to develop novel antibacterial agents.
Antimicrobial peptides (AMPs) constitute a diverse class of naturally occurring or synthetic antimicrobial molecules that have potential for use in the treatment of drug-resistant infections. Several undesirable properties of AMPs, however, may ultimately hinder their development as antimicrobial agents. Thus, new synthetic strategies, including primarily the de novo design of AMPs, urgently need to be developed. In this study, a series of peptides, H-(RWL) n (n = 1, 2, 3, 4, or 5), were designed. H represents GLRPKYS from the C-terminal sequence of AvBD-4. Our results showed that these RWL-tagged peptides can kill not only bacteria but also human hepatocellular carcinoma HepG2 cells. However, the peptide tagged with two repeats of RWL (GW13) showed less affinity to human embryonic lung fibroblast MRC-5 cells or human red blood cells (hRBCs) than HepG2 cells. These results demonstrated that GW13, with high amphiphilicity, exerted great selectivity toward bacteria and cancer cells, sparing host mammalian cells. The mechanism of action against bacteria was elucidated through combined studies of scanning electron microscopy (SEM) and fluorescence assays, showing that the peptide possessed membrane-lytic activities against microbial cells. The fluorescence assays illustrated that GW13 induced apoptosis in HepG2 cells. The cell morphology of HepG2 cells, observed by SEM, further illustrated that GW13 causes cell death by damaging the cell membrane. Our results indicate that GW13 has considerable potential for future development as an antimicrobial and antitumor agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.