For most bacterial lung infections, the concentration of unbound antimicrobial agent in lung interstitial fluid has been thought to be responsible for antimicrobial efficacy. In this study, a diffusion-limited physiologically based pharmacokinetic (PBPK) model was developed to predict the pulmonary pharmacokinetics of florfenicol (FF) in pigs. The model included separate compartments corresponding to blood, diffusion-limited lung, flow-limited muscle, liver, and kidney and an extra compartment representing the remaining carcass. The absorption rate constant and renal and hepatic clearance of FF were determined in vivo. Other parameters were taken from the literature or optimized based on existing pharmacokinetic data. All mathematical operations during the development of the model were performed using acslXtreme version 3.0.2.1 (Aegis Technologies Group, Inc., Huntsville, AL, USA). The model accurately predicted the concentration-time courses of FF in lung interstitial fluid, serum, and plasma following different dosing schedules, except at the dose of 15 mg/kg. When compared with the tissue residue data, the model generally underestimated the FF concentration at the injection site, whereas it gave good predictions of FF concentrations in lung, liver, and kidney at early time points. The model predictions provide a scientific basis for the dosage regimen design of FF.
For most bacterial lung infections, the concentration of unbound antimicrobial agent in lung interstitial fluid has been considered as the gold standard for estimating the antibacterial efficacy. In this study, the pharmacokinetics of florfenicol (FF) in porcine lung interstitial fluid was investigated after single intramuscular administration at two different doses (20 and 50 mg/kg). Twelve pigs underwent thoracotomy under general anesthesia. Then, the CMA/30 probe was implanted into the lung and perfused at 1 μL/min. The microdialysis (MD) samples were collected on a preset schedule and analyzed by high-performance liquid chromatography (HPLC). Noncompartmental pharmacokinetic analysis was performed. FF exhibited rapid distribution and slow elimination in porcine lung interstitial fluid. The main pharmacokinetic parameters at 20 and 50 mg/kg were 4.88 ± 0.54 and 10.36 ± 2.52 μg/mL for the maximum concentration (C ), 3.25 ± 0.32 and 3.50 ± 0.27 h for the time to C (T ), 9.47 ± 6.84 and 7.75 ± 3.23 h for the half-life (t ), 0.10 ± 0.06 and 0.10 ± 0.04 1/h for the terminal elimination rate constant (λ ), 13.85 ± 7.97 and 11.42 ± 2.79 h for the mean residence time (MRT), 37.77 ± 8.13 and 71.15 ± 16.99 h·μg/mL for the area under the curve from time 0 to 18.25 h (AUC ), and 51.18 ± 20.11 and 88.78 ± 27.58 h·μg/mL for the area under the curve from time 0 to infinity (AUC ), respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.