Crosslinked polymers are important in a very wide range of applications including dental restorative materials. However, currently used polymeric materials experience limited durability in the clinical oral environment. Researchers in the dental polymer field have generally used a time-consuming experimental trial-and-error approach to the design of new materials. The application of computational molecular design (CMD) to crosslinked polymer networks has the potential to facilitate development of improved polymethacrylate dental materials. CMD uses quantitative structure property relations (QSPRs) and optimization techniques to design molecules possessing desired properties. This paper describes a mathematical framework which provides tools necessary for the application of CMD to crosslinked polymer systems. The novel parts of the system include the data structures used, which allow for simple calculation of structural descriptors, and the formulation of the optimization problem. A heuristic optimization method, Tabu Search, is used to determine candidate monomers. Use of a heuristic optimization algorithm makes the system more independent of the types of QSPRs used, and more efficient when applied to combinatorial problems. A software package has been created which provides polymer researchers access to the design framework. A complete example of the methodology is provided for polymethacrylate dental materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.