Non-circular orbits in cone-beam CT (CBCT) imaging are increasingly being studied for potential benefits in field-of-view, dose reduction, improved image quality, minimal interference in guided procedures, metal artifact reduction, and more. While modern imaging systems such as robotic C-arms are enabling more freedom in potential orbit designs, practical implementation on such clinical systems remains challenging due to obstacles in critical stages of the workflow, including orbit realization, geometric calibration, and reconstruction. In this work, we build upon previous successes in clinical implementation and address key challenges in the geometric calibration stage with a novel calibration method. The resulting workflow eliminates the need for prior patient scans or dedicated calibration phantoms, and can be conducted in clinically relevant processing times.
Objectives: Cone beam computed tomography (CBCT) imaging is becoming an indispensable intraoperative tool; however, the current field of view prevents visualization of long anatomical sites, limiting clinical utility. Here, we demonstrate the longitudinal extension of the intraoperative CBCT field of view using a multi-turn reverse helical scan and assess potential clinical utility in interventional procedures. Materials and Methods: A fixed-room robotic CBCT imaging system, with additional real-time control, was used to implement a multi-turn reverse helical scan. The scan consists of C-arm rotation, through a series of clockwise and anticlockwise rotations, combined with simultaneous programmed table translation. The motion properties and geometric accuracy of the multi-turn reverse helical imaging trajectory were examined using a simple geometric phantom. To assess potential clinical utility, a pedicle screw posterior fixation procedure in the thoracic spine from T1 to T12 was performed on an ovine cadaver. The multi-turn reverse helical scan was used to provide postoperative assessment of the screw insertion via cortical breach grading and mean screw angle error measurements (axial and sagittal) from 2 observers. For all screw angle measurements, the intraclass correlation coefficient was calculated to determine observer reliability. Results: The multi-turn reverse helical scans took 100 seconds to complete and increased the longitudinal coverage by 370% from 17 cm to 80 cm. Geometric accuracy was examined by comparing the measured to actual dimensions (0.2 ± 0.1 mm) and angles (0.2 ± 0.1 degrees) of a simple geometric phantom, indicating that the multi-turn reverse helical scan provided submillimeter and degree accuracy with no distortion. During the pedicle screw procedure in an ovine cadaver, the multi-turn reverse helical scan identified 4 cortical breaches, confirmed via the postoperative CT scan. Directly comparing the screw insertion angles (n = 22) measured in the postoperative multi-turn reverse helical and CT scans revealed an average difference of 3.3 ± 2.6 degrees in axial angle and 1.9 ± 1.5 degrees in the sagittal angle from 2 expert observers. The intraclass correlation coefficient was above 0.900 for all measurements (axial and sagittal) across all scan types (conventional CT, multi-turn reverse helical, and conventional CBCT), indicating excellent reliability between observers.Conclusions: Extended longitudinal field-of-view intraoperative 3-dimensional imaging with a multi-turn reverse helical scan is feasible on a clinical robotic CBCT imaging system, enabling long anatomical sites to be visualized in a single image, including in the presence of metal hardware.
In this work we describe a new dynamic x-ray collimator that may be used to collect sparse computed tomography projection data. Data sparsity may be user-specified and controlled both angularly and radially -allowing a broad range of acquisition strategies. We consider protocols that have fully sampled projection data for a volume-of-interest with a sparsely sampled background. Model-based reconstruction methods are adapted to process the non-uniformly sampled projections. We demonstrate the ability of a CT system with this novel dynamic collimator to provide user controllable regional image quality and dose reduction in a set of phantom experiments.
Background:The clinical benefits of intraoperative cone beam CT (CBCT) during orthopedic procedures include (1) improved accuracy for procedures involving the placement of hardware and (2) providing immediate surgical verification. Purpose: Orthopedic interventions often involve long and wide anatomical sites (e.g., lower extremities). Therefore, in order to ensure that the clinical benefits are available to all orthopedic procedures, we investigate the feasibility of a novel imaging trajectory to simultaneously expand the CBCT field-of -view longitudinally and laterally. Methods: A continuous dual-isocenter imaging trajectory was implemented on a clinical robotic CBCT system using additional real-time control hardware. The trajectory consisted of 200 • circular arcs separated by alternating lateral and longitudinal table translations.Due to hardware constraints,the direction of rotation (clockwise/anticlockwise) and lateral table translation (left/right) was reversed every 400 • . X-ray projections were continuously acquired at 15 frames/s throughout all movements. A whole-body phantom was used to verify the trajectory. As comparator, a series of conventional large volume acquisitions were stitched together. Image quality was quantified using Root Mean Square Deviation (RMSD),Mean Absolute Percentage Deviation (MAPD), Structural Similarity Index Metric (SSIM) and Contrast-to-Noise Ratio (CNR). Results:The imaging volume produced by the continuous dual-isocenter trajectory had dimensions of L = 95 cm × W = 45 cm × H = 45 cm. This enabled the hips to the feet of the whole-body phantom to be captured in approximately half the imaging dose and acquisition time of the 11 stitched conventional acquisitions required to match the longitudinal and lateral imaging dimensions. Compared to the stitched conventional images, the continuous dual-isocenter acquisition had RMSD of 4.84, MAPD of 6.58% and SSIM of 0.99. The CNR of the continuous dual-isocenter and stitched conventional acquisitions were 1.998 and 1.999, respectively. Conclusion: Extended longitudinal and lateral intraoperative volumetric imaging is feasible on clinical robotic CBCT systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.