Fibronectin (FN) matrix assembly is a cell-dependent process mediated by cell surfacebinding sites for the 70-kDa amino-terminal region of FN. We have shown recently that lysophosphatidic acid (LPA) is a stimulator of FN matrix assembly. Disruption of microtubules has been shown to mimic some of the intracellular effects of LPA including the formation of actin stress fibers and myosin light chain phosphorylation. We compared the effects of microtubule disruption and LPA on FN binding and actin cytoskeleton organization. The disruption of microtubules by nocodazole or vinblastine increased FN binding to adherent cells. The modulation of binding sites was rapid, dynamic, and reversible. Enhanced binding was due to increases in both the number and affinity of binding sites. These effects are similar to the effects of LPA on FN binding. Binding induced by nocodazole was inhibited by the microtubule-stabilizing agent Taxol but not by pretreatment with a concentration of phospholipase B that totally abolished the stimulatory effect of LPA. Fluorescence microscopy revealed a close correlation among actin stress fiber formation, cell contraction, and FN binding. Blockage of the small GTP binding protein Rho or actin-myosin interactions inhibited the effects of both nocodazole and LPA on FN binding. These observations demonstrate that Rho-dependent actin stress fiber formation and cell contraction induce increased FN binding and represent a rapid labile way that cells can modulate FN matrix assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.