We report the structural properties and spatial ordering of multilayer ZnMgTe quantum dots (QDs) embedded in ZnSe, where sub-monolayer quantities of Mg were introduced periodically during growth in order to reduce the valence band offset of ZnTe QDs. The periodicity, period dispersion, individual layer thickness, and the composition of the multilayer structures were determined by comparing the experimental high resolution x-ray diffraction (HRXRD) spectra to simulated ones for the allowed (004) and quasi-forbidden (002) reflections in combination with transmission electron microscopy (TEM) results. Secondary ion mass spectroscopy (SIMS) profiles confirmed the incorporation of Mg inside the QD layers, and the HRXRD analysis revealed that there is approximately 32% Mg in the ZnMgTe QDs. The presence of Mg contributes to higher scattering intensity of the HRXRD, leading to the observation of higher order superlattice peaks in both the (004) and (002) reflections. The distribution of scattered intensity in the reciprocal space map (RSM) shows that the diffuse scattered intensity is elongated along the q x axis, indicating a vertical correlation of the dots, which is found to be less defined for the sample with larger periodicity. The diffuse scattered intensity is also found to be weakly correlated along the q z direction indicating a weak lateral correlation of the dots. V
Pronounced Purcell enhancement of spontaneous emission in CdTe/ZnTe quantum dots embedded in micropillar cavities Appl. Phys. Lett. 101, 132105 (2012) Fabrication and photoluminescence of SiC quantum dots stemming from 3C, 6H, and 4H polytypes of bulk SiC Appl. Phys. Lett. 101, 131906 (2012) Anomalous temperature dependence of photoluminescence in self-assembled InGaN quantum dots Appl. Phys. Lett. 101, 131101 (2012) Optical properties of multi-stacked InGaAs/GaNAs quantum dot solar cell fabricated on GaAs (311)B substrate J. Appl. Phys. 112, 064314 (2012) Tunable electroluminescence from polymer-passivated 3C-SiC quantum dot thin films Sub-monolayer quantities of Mg are introduced in multilayer stacked ZnMgTe quantum dots (QDs) embedded in ZnSe barriers in order to reduce the hole confinement energy by controlling the bandgaps and band-offsets of ZnTe/ZnSe system having type-II band alignment. The photoluminescence (PL) emission from such ZnMgTe/ZnSe QD structure is found to be a broad band centered at 2.35 eV. The higher energy side of the PL band shows a larger blue-shift with increasing excitation intensity and a faster life-time decay due to a greater contribution of the emission from the smaller size dots and the isoelectronic bound excitons. It is found that the characteristic decay time of the PL evolves along the band with a value of 129 ns at 2.18 eV to 19 ns at 2.53 eV. The temperature dependent PL emission is controlled by two thermally activated processes: ionization of electrons away from QD state to the barrier (E A1 $ 3 meV) by breaking the type-II excitons and thermal escape of the holes from the ground state to the barrier (E A2 $ 114-116 meV). We propose a modified band diagram and energy levels for this ZnMgTe/ ZnSe multilayer QD system by determining the composition of Mg inside the QDs and solving the 1-D Schrodinger's equation and show that Mg incorporation lowers the hole activation energy via modification of the valence band offset without changing the barrier significantly. V C 2012 American Institute of Physics. [http://dx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.