In this paper, the transonic flow pattern and its influence on heat transfer on a high-pressure turbine blade tip are investigated using experimental and computational methods. Spatially resolved heat transfer data are obtained at conditions representative of a single-stage high-pressure turbine blade (Mexit=1.0, Reexit=1.27×106, gap=1.5% chord) using the transient infrared thermography technique within the Oxford high speed linear cascade research facility. Computational fluid dynamics (CFD) predictions are conducted using the Rolls-Royce HYDRA/PADRAM suite. The CFD solver is able to capture most of the spatial heat flux variations and gives prediction results, which compare well with the experimental data. The results show that the majority of the blade tip experiences a supersonic flow with peak Mach number reaching 1.8. Unlike other low-speed data in the open literature, the turbine blade tip heat transfer is greatly influenced by the shock wave structure inside the tip gap. Oblique shock waves are initiated near the pressure-side edge of the tip, prior to being reflected multiple times between the casing and the tip. Supersonic flow within the tip gap is generally terminated by a normal shock near the exit of the gap. Both measured and calculated heat transfer spatial distributions illustrate very clear stripes as the signature of the multiple shock structure. Overall, the supersonic part of tip experiences noticeably lower heat transfer than that near the leading-edge where the flow inside the tip gap remains subsonic.
A closely combined experimental and computational fluid dynamics (CFD) study on a transonic blade tip aerothermal performance at engine representative Mach and Reynolds numbers (Mexit=1,Reexit=1.27×106) is presented here and its companion paper (Part II). The present paper considers surface heat-transfer distributions on tip surfaces and on suction and pressure-side surfaces (near-tip region). Spatially resolved surface heat-transfer data are measured using infrared thermography and transient techniques within the Oxford University high speed linear cascade research facility. The Rolls-Royce PLC HYDRA suite is employed for numerical predictions for the same tip configuration and flow conditions. The CFD results are generally in good agreement with experimental data and show that the flow over a large portion of the blade tip is supersonic for all three tip gaps investigated. Mach numbers within the tip gap become lower as the tip gap decreases. For the flow regions near the leading edge of the tip gap, surface Nusselt numbers decrease as the tip gap decreases. Opposite trends are observed for the trailing edge region. Several “hot spot” features on blade tip surfaces are attributed to enhanced turbulence thermal diffusion in local regions. Other surface heat-transfer variations are attributed to flow variations induced by shock waves. Flow structure and surface heat-transfer variations are also investigated numerically when a moving casing is present. The inclusion of moving casing leads to notable changes to flow structural characteristics and associated surface heat-transfer variations. However, significant portions of the tip leakage flow remain transonic with clearly identifiable shock wave structures.
The present study considers spatially resolved surface heat transfer coefficients and adiabatic wall temperatures on a turbine blade tip in a linear cascade under transonic conditions. Five different measurement and processing techniques using infrared thermography are considered and compared. Three transient methods use the same experimental setup, using a heater mesh to provide a near-instantaneous step-change in mainstream temperature, employing an infrared camera to measure surface temperature. These three methods use the same data but different processing techniques to determine the heat transfer coefficients and adiabatic wall temperatures. Two of these methods use different processing techniques to reconstruct heat flux from the temperature time trace measured. A plot of the heat flux versus temperature is used to determine the heat transfer coefficients and adiabatic wall temperatures. The third uses the classical solution to the 1D nonsteady Fourier equation to determine heat transfer coefficients and adiabatic wall temperatures. The fourth method uses regression analysis to calculate detailed heat transfer coefficients for a quasi-steady-state condition using a thin-foil heater on the tip surface. Finally, the fifth method uses the infrared camera to measure the adiabatic wall temperature surface distribution of a blade tip after a quasi-steady-state condition is present. Overall, the present study shows that the infrared thermography technique with heat flux reconstruction using the impulse method is the most accurate, computationally efficient, and reliable method to obtain detailed, spatially resolved heat transfer coefficients and adiabatic wall temperatures on a transonic turbine blade tip in a linear cascade.
A closely combined experimental and CFD study on a transonic blade tip aero-thermal performance at engine representative Mach and Reynolds numbers (Mexit = 1, Reexit = 1.27×106) is presented in this and its companion paper (Part II). The present paper considers surface heat transfer distributions on tip surfaces, and on suction and pressure side surfaces (near-tip region). Spatially-resolved surface heat transfer data are measured using infrared thermography and transient techniques within the Oxford University High Speed Linear Cascade research facility. The Rolls-Royce PLC HYDRA suite is employed for numerical predictions for the same tip configuration and flow conditions. The CFD results are generally in good agreement with experimental data, and show that the flow over a large portion of the blade tip is supersonic for all three tip gaps investigated. Mach numbers within the tip gap become lower as the tip gap decreases. For the flow regions near the leading edge of the tip gap, surface Nusselt numbers decrease as the tip gap decreases. Opposite trends are observed for the trailing edge region. Several ‘hot spot’ features on blade tip surfaces are attributed to enhanced turbulence thermal diffusion in local regions. Other surface heat transfer variations are attributed to flow variations induced by shock waves. Flow structure and surface heat transfer variations are also investigated numerically when a moving casing is present. The inclusion of moving casing leads to notable changes to flow structural characteristics and associated surface heat transfer variations. However, significant portions of the tip leakage flow remain transonic with clearly identifiable shock wave structures.
This is the accepted version of the paper.This version of the publication may differ from the final published version. Permanent repository link
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.