Full-aperture polishing is a significant process in fabricating large optical flats because it restrains Mid-Spatial Frequency errors and removes material quickly on the whole optic surface. Nevertheless, optical flats fabricated by full-aperture polishing generally fail to meet the stringent requirement of surface figure, which has to be corrected by sub-aperture polishing processes. Surface figure of optical flats in full-aperture polishing processes is primarily dependent on the pressure distribution uniformity which correlates intensively with the lap shape. At present, practical and precise means are urgently desired for measuring and correcting the lap shape, especially the polyurethane pad lap. In the study, we present a novel method for deterministic measurement of the pad shape. The method obtains the height of the pad at spirally distributed locations implemented by the revolution of the pad and translation of the laser displacement sensor. The pad shape in terms of matrixes whose elements representing the heights at the corresponding locations is then calculated by interpolation algorithm based on the obtained data. Further, we propose a method for deterministic correction of the pad shape utilizing a small conditioning tool. The dwell time algorithm and implementation strategy for the dwell time are provided for common full-aperture polishers. These solutions for the deterministic measurement and correction of the pad shape have been validated on a full-aperture polisher with polyurethane pad. The polishing experiments revealed that the optic surface figure was obviously improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.